Documentation

Mathlib.AlgebraicTopology.SimplicialSet.Monoidal

The monoidal category structure on simplicial sets #

This file defines an instance of chosen finite products for the category SSet. It follows from the fact the SSet if a category of functors to the category of types and that the category of types have chosen finite products. As a result, we obtain a monoidal category structure on SSet.

@[simp]
theorem SSet.tensorHom_app_apply {K K' L L' : SSet} (f : K K') (g : L L') {Δ : SimplexCategoryᵒᵖ} (x : (CategoryTheory.MonoidalCategory.tensorObj K L).obj Δ) :
(CategoryTheory.MonoidalCategory.tensorHom f g).app Δ x = (f.app Δ x.1, g.app Δ x.2)
@[simp]
theorem SSet.whiskerLeft_app_apply (K : SSet) {L L' : SSet} (g : L L') {Δ : SimplexCategoryᵒᵖ} (x : (CategoryTheory.MonoidalCategory.tensorObj K L).obj Δ) :
(CategoryTheory.MonoidalCategory.whiskerLeft K g).app Δ x = (x.1, g.app Δ x.2)
@[simp]
theorem SSet.whiskerRight_app_apply {K K' : SSet} (f : K K') (L : SSet) {Δ : SimplexCategoryᵒᵖ} (x : (CategoryTheory.MonoidalCategory.tensorObj K L).obj Δ) :
(CategoryTheory.MonoidalCategory.whiskerRight f L).app Δ x = (f.app Δ x.1, x.2)

The bijection (𝟙_ SSet ⟶ K) ≃ K _[0].

Equations
  • One or more equations did not get rendered due to their size.
Instances For