Topological simplices #
We define the natural functor from SimplexCategory
to TopCat
sending ⦋n⦌
to the
topological n
-simplex.
This is used to define TopCat.toSSet
in AlgebraicTopology.SingularSet
.
The topological simplex associated to x : SimplexCategory
.
This is the object part of the functor SimplexCategory.toTop
.
Equations
- x.toTopObj = {f : CategoryTheory.ToType x → NNReal | ∑ i : CategoryTheory.ToType x, f i = 1}
Instances For
instance
SimplexCategory.instCoeFunElemForallToTypeOrderHomFinHAddNatLenOfNatNNRealToTopObj
(x : SimplexCategory)
:
CoeFun ↑x.toTopObj fun (x_1 : ↑x.toTopObj) => CategoryTheory.ToType x → NNReal
Equations
- x.instCoeFunElemForallToTypeOrderHomFinHAddNatLenOfNatNNRealToTopObj = { coe := fun (f : ↑x.toTopObj) => ↑f }
Equations
- One or more equations did not get rendered due to their size.
The one-dimensional topological simplex is homeomorphic to the unit interval.
Equations
- One or more equations did not get rendered due to their size.
Instances For
A morphism in SimplexCategory
induces a map on the associated topological spaces.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
SimplexCategory.coe_toTopMap
{x y : SimplexCategory}
(f : x ⟶ y)
(g : ↑x.toTopObj)
(i : CategoryTheory.ToType y)
:
↑(toTopMap f g) i = ∑
j ∈
Finset.filter
(fun (x_1 : (fun (X : SimplexCategory) => Fin (X.len + 1)) x) =>
(CategoryTheory.ConcreteCategory.hom f) x_1 = i)
Finset.univ,
↑g j
theorem
SimplexCategory.continuous_toTopMap
{x y : SimplexCategory}
(f : x ⟶ y)
:
Continuous (toTopMap f)
The functor associating the topological n
-simplex to ⦋n⦌ : SimplexCategory
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
@[simp]