Documentation

Mathlib.AlgebraicTopology.TopologicalSimplex

Topological simplices #

We define the natural functor from SimplexCategory to TopCat sending ⦋n⦌ to the topological n-simplex. This is used to define TopCat.toSSet in AlgebraicTopology.SingularSet.

The topological simplex associated to x : SimplexCategory. This is the object part of the functor SimplexCategory.toTop.

Equations
Instances For
    theorem SimplexCategory.toTopObj.ext {x : SimplexCategory} (f g : x.toTopObj) :
    f = gf = g
    @[simp]
    theorem SimplexCategory.toTopObj_zero_apply_zero (f : (mk 0).toTopObj) :
    f 0 = 1
    theorem SimplexCategory.toTopObj_one_add_eq_one (f : (mk 1).toTopObj) :
    f 0 + f 1 = 1
    theorem SimplexCategory.toTopObj_one_coe_add_coe_eq_one (f : (mk 1).toTopObj) :
    (f 0) + (f 1) = 1
    Equations
    • One or more equations did not get rendered due to their size.

    The one-dimensional topological simplex is homeomorphic to the unit interval.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      def SimplexCategory.toTopMap {x y : SimplexCategory} (f : x y) (g : x.toTopObj) :

      A morphism in SimplexCategory induces a map on the associated topological spaces.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[simp]
        theorem SimplexCategory.coe_toTopMap {x y : SimplexCategory} (f : x y) (g : x.toTopObj) (i : CategoryTheory.ToType y) :
        (toTopMap f g) i = jFinset.filter (fun (x_1 : (fun (X : SimplexCategory) => Fin (X.len + 1)) x) => (CategoryTheory.ConcreteCategory.hom f) x_1 = i) Finset.univ, g j

        The functor associating the topological n-simplex to ⦋n⦌ : SimplexCategory.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem SimplexCategory.toTop_map {X✝ Y✝ : SimplexCategory} (f : X✝ Y✝) :
          toTop.map f = TopCat.ofHom { toFun := toTopMap f, continuous_toFun := }