Path connectedness #
Continuing from Mathlib.Topology.Path
, this file defines path components and path-connected
spaces.
Main definitions #
In the file the unit interval [0, 1]
in ℝ
is denoted by I
, and X
is a topological space.
Joined (x y : X)
means there is a path betweenx
andy
.Joined.somePath (h : Joined x y)
selects some path between two pointsx
andy
.pathComponent (x : X)
is the set of points joined tox
.PathConnectedSpace X
is a predicate class asserting thatX
is non-empty and every two points ofX
are joined.
Then there are corresponding relative notions for F : Set X
.
JoinedIn F (x y : X)
means there is a pathγ
joiningx
toy
with values inF
.JoinedIn.somePath (h : JoinedIn F x y)
selects a path fromx
toy
insideF
.pathComponentIn F (x : X)
is the set of points joined tox
inF
.IsPathConnected F
asserts thatF
is non-empty and every two points ofF
are joined inF
.
Main theorems #
One can link the absolute and relative version in two directions, using (univ : Set X)
or the
subtype ↥F
.
pathConnectedSpace_iff_univ : PathConnectedSpace X ↔ IsPathConnected (univ : Set X)
isPathConnected_iff_pathConnectedSpace : IsPathConnected F ↔ PathConnectedSpace ↥F
Furthermore, it is shown that continuous images and quotients of path-connected sets/spaces are path-connected, and that every path-connected set/space is also connected.
Being joined by a path #
When two points are joined, choose some path from x
to y
.
Equations
- h.somePath = Nonempty.some h
Instances For
The setoid corresponding the equivalence relation of being joined by a continuous path.
Equations
- pathSetoid X = { r := Joined, iseqv := ⋯ }
Instances For
The quotient type of points of a topological space modulo being joined by a continuous path.
Equations
- ZerothHomotopy X = Quotient (pathSetoid X)
Instances For
Equations
- ZerothHomotopy.inhabited = { default := Quotient.mk' 0 }
Being joined by a path inside a set #
The relation "being joined by a path in F
". Not quite an equivalence relation since it's not
reflexive for points that do not belong to F
.
Equations
- JoinedIn F x y = ∃ (γ : Path x y), ∀ (t : ↑unitInterval), γ t ∈ F
Instances For
When x
and y
are joined in F
, choose a path from x
to y
inside F
Equations
Instances For
If x
and y
are joined in the set F
, then they are joined in the subtype F
.
Alias of Topology.IsInducing.joinedIn_image
.
Path component #
The path component of x
is the set of points that can be joined to x
.
Instances For
The path component of x
in F
is the set of points that can be joined to x
in F
.
Instances For
Path connected sets #
A set F
is path connected if it contains a point that can be joined to all other in F
.
Equations
- IsPathConnected F = ∃ x ∈ F, ∀ {y : X}, y ∈ F → JoinedIn F x y
Instances For
If f
is continuous on F
and F
is path-connected, so is f(F)
.
If f
is continuous and F
is path-connected, so is f(F)
.
If f : X → Y
is an inducing map, f(F)
is path-connected iff F
is.
Alias of Topology.IsInducing.isPathConnected_iff
.
If f : X → Y
is an inducing map, f(F)
is path-connected iff F
is.
If h : X → Y
is a homeomorphism, h(s)
is path-connected iff s
is.
If h : X → Y
is a homeomorphism, h⁻¹(s)
is path-connected iff s
is.
If a set W
is path-connected, then it is also path-connected when seen as a set in a smaller
ambient type U
(when U
contains W
).
Path connected spaces #
Use path-connectedness to build a path between two points.
Equations
Instances For
This is a special case of NormedSpace.instPathConnectedSpace
(and
IsTopologicalAddGroup.pathConnectedSpace
). It exists only to simplify dependencies.