Documentation

Mathlib.AlgebraicTopology.TopologicalSimplex

Topological simplices #

We define the natural functor from SimplexCategory to TopCat sending ⦋n⦌ to the topological n-simplex. This is used to define TopCat.toSSet in AlgebraicTopology.SingularSet.

The functor SimplexCategory ⥤ TopCat.{0} associating the topological n-simplex to ⦋n⦌ : SimplexCategory.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem SimplexCategory.toTop₀_map {X✝ Y✝ : SimplexCategory} (f : X✝ Y✝) :
    toTop₀.map f = TopCat.ofHom { toFun := stdSimplex.map (CategoryTheory.ConcreteCategory.hom f), continuous_toFun := }
    @[simp]
    theorem SimplexCategory.toTop_map {X✝ Y✝ : SimplexCategory} (f : X✝ Y✝) :
    @[deprecated SimplexCategory.toTop₀ (since := "2025-08-25")]

    Alias of SimplexCategory.toTop₀.


    The functor SimplexCategory ⥤ TopCat.{0} associating the topological n-simplex to ⦋n⦌ : SimplexCategory.

    Equations
    Instances For
      @[deprecated stdSimplex.ext (since := "2025-08-25")]
      theorem SimplexCategory.toTopObj.ext {S : Type u_1} [Semiring S] [PartialOrder S] {X : Type u_2} [Fintype X] {s t : (stdSimplex S X)} (h : s = t) :
      s = t

      Alias of stdSimplex.ext.

      @[deprecated stdSimplex.eq_one_of_unique (since := "2025-08-25")]
      theorem SimplexCategory.toTopObj_zero_apply_zero {S : Type u_1} [Semiring S] [PartialOrder S] {X : Type u_2} [Fintype X] [IsOrderedRing S] [Unique X] (s : (stdSimplex S X)) (x : X) :
      s x = 1

      Alias of stdSimplex.eq_one_of_unique.

      @[deprecated stdSimplex.add_eq_one (since := "2025-08-25")]
      theorem SimplexCategory.toTopObj_one_add_eq_one {S : Type u_1} [Semiring S] [PartialOrder S] (s : (stdSimplex S (Fin 2))) :
      s 0 + s 1 = 1

      Alias of stdSimplex.add_eq_one.

      @[deprecated stdSimplex.add_eq_one (since := "2025-08-25")]
      theorem SimplexCategory.toTopObj_one_coe_add_coe_eq_one {S : Type u_1} [Semiring S] [PartialOrder S] (s : (stdSimplex S (Fin 2))) :
      s 0 + s 1 = 1

      Alias of stdSimplex.add_eq_one.

      @[deprecated stdSimplexHomeomorphUnitInterval (since := "2025-08-25")]

      Alias of stdSimplexHomeomorphUnitInterval.


      The standard one-dimensional simplex in ℝ² = Fin 2 → ℝ is homeomorphic to the unit interval.

      Equations
      Instances For
        @[deprecated SimplexCategory.toTop₀ (since := "2025-08-25")]

        Alias of SimplexCategory.toTop₀.


        The functor SimplexCategory ⥤ TopCat.{0} associating the topological n-simplex to ⦋n⦌ : SimplexCategory.

        Equations
        Instances For
          @[deprecated FunOnFinite.linearMap_apply_apply (since := "2025-08-25")]
          theorem SimplexCategory.coe_toTopMap (R : Type u_4) (M : Type u_5) [Semiring R] [AddCommMonoid M] [Module R M] {X : Type u_6} {Y : Type u_7} [Fintype X] [Finite Y] [DecidableEq Y] (f : XY) (s : XM) (y : Y) :
          (FunOnFinite.linearMap R M f) s y = {x : X | f x = y}.sum s

          Alias of FunOnFinite.linearMap_apply_apply.

          @[deprecated stdSimplex.continuous_map (since := "2025-08-25")]

          Alias of stdSimplex.continuous_map.