Documentation

Mathlib.Analysis.Asymptotics.TVS

Asymptotics in a Topological Vector Space #

This file defines Asymptotics.IsLittleOTVS, Asymptotics.IsBigOTVS, and Asymptotics.IsThetaTVS as generalizations of Asymptotics.IsLittleO, Asymptotics.IsBigO, and Asymptotics.IsTheta from normed spaces to topological vector spaces.

Given two functions f and g taking values in topological vector spaces over a normed field K, we say that $f = o(g)$ (resp., $f = O(g)$) if for any neighborhood of zero U in the codomain of f there exists a neighborhood of zero V in the codomain of g such that $\operatorname{gauge}_{K, U} (f(x)) = o(\operatorname{gauge}_{K, V} (g(x)))$ (resp., $\operatorname{gauge}_{K, U} (f(x)) = O(\operatorname{gauge}_{K, V} (g(x)))$), where $\operatorname{gauge}_{K, U}(y) = \inf \{‖c‖ \mid y ∈ c • U\}$.

We say that $f=Θ(g)$, if both $f=O(g)$ and $g=O(f)$.

In a normed space, we can use balls of positive radius as both U and V, thus reducing the definition to the classical one.

These modifications of the definitions free the user from having to chose a canonical norm, at the expense of having to pick a specific base field. This is exactly the tradeoff we want in HasFDerivAtFilter, as there the base field is already chosen, and this removes the choice of norm being part of the statement.

These definitions were added to the library in order to migrate Fréchet derivatives from normed vector spaces to topological vector spaces. The definitions are motivated by https://en.wikipedia.org/wiki/Fr%C3%A9chet_derivative#Generalization_to_topological_vector_spaces but the definition there doesn't work for topological vector spaces over general normed fields. This Zulip discussion led to the current choice of the definition of Asymptotics.IsLittleOTVS, and Asymptotics.IsBigOTVS was defined in a similar manner.

Main results #

TODO #

structure Asymptotics.IsLittleOTVS (𝕜 : Type u_1) {α : Type u_2} {E : Type u_3} {F : Type u_4} [ENorm 𝕜] [TopologicalSpace E] [TopologicalSpace F] [Zero E] [Zero F] [SMul 𝕜 E] [SMul 𝕜 F] (l : Filter α) (f : αE) (g : αF) :

f =o[𝕜; l] g (IsLittleOTVS 𝕜 l f g) is a generalization of f =o[l] g (IsLittleO l f g) that works in topological 𝕜-vector spaces.

Given two functions f and g taking values in topological vector spaces over a normed field K, we say that $f = o(g)$ if for any neighborhood of zero U in the codomain of f there exists a neighborhood of zero V in the codomain of g such that $\operatorname{gauge}_{K, U} (f(x)) = o(\operatorname{gauge}_{K, V} (g(x)))$, where $\operatorname{gauge}_{K, U}(y) = \inf \{‖c‖ \mid y ∈ c • U\}$.

We use an ENNReal-valued function egauge for the gauge, so we unfold the definition of little o instead of reusing it.

Instances For
    theorem Asymptotics.isLittleOTVS_iff (𝕜 : Type u_1) {α : Type u_2} {E : Type u_3} {F : Type u_4} [ENorm 𝕜] [TopologicalSpace E] [TopologicalSpace F] [Zero E] [Zero F] [SMul 𝕜 E] [SMul 𝕜 F] (l : Filter α) (f : αE) (g : αF) :
    f =o[𝕜; l] g Unhds 0, Vnhds 0, ∀ (ε : NNReal), ε 0(fun (x : α) => egauge 𝕜 U (f x)) ≤ᶠ[l] fun (x : α) => ε * egauge 𝕜 V (g x)

    f =o[𝕜; l] g (IsLittleOTVS 𝕜 l f g) is a generalization of f =o[l] g (IsLittleO l f g) that works in topological 𝕜-vector spaces.

    Given two functions f and g taking values in topological vector spaces over a normed field K, we say that $f = o(g)$ if for any neighborhood of zero U in the codomain of f there exists a neighborhood of zero V in the codomain of g such that $\operatorname{gauge}_{K, U} (f(x)) = o(\operatorname{gauge}_{K, V} (g(x)))$, where $\operatorname{gauge}_{K, U}(y) = \inf \{‖c‖ \mid y ∈ c • U\}$.

    We use an ENNReal-valued function egauge for the gauge, so we unfold the definition of little o instead of reusing it.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      structure Asymptotics.IsBigOTVS (𝕜 : Type u_1) {α : Type u_2} {E : Type u_3} {F : Type u_4} [ENorm 𝕜] [TopologicalSpace E] [TopologicalSpace F] [Zero E] [Zero F] [SMul 𝕜 E] [SMul 𝕜 F] (l : Filter α) (f : αE) (g : αF) :

      f =O[𝕜; l] g (IsBigOTVS 𝕜 l f g) is a generalization of f =O[l] g (IsBigO l f g) that works in topological 𝕜-vector spaces.

      Given two functions f and g taking values in topological vector spaces over a normed field 𝕜, we say that $f = O(g)$ if for any neighborhood of zero U in the codomain of f there exists a neighborhood of zero V in the codomain of g such that $\operatorname{gauge}_{K, U} (f(x)) \le \operatorname{gauge}_{K, V} (g(x))$, where $\operatorname{gauge}_{K, U}(y) = \inf \{‖c‖ \mid y ∈ c • U\}$.

      Instances For
        theorem Asymptotics.isBigOTVS_iff (𝕜 : Type u_1) {α : Type u_2} {E : Type u_3} {F : Type u_4} [ENorm 𝕜] [TopologicalSpace E] [TopologicalSpace F] [Zero E] [Zero F] [SMul 𝕜 E] [SMul 𝕜 F] (l : Filter α) (f : αE) (g : αF) :
        f =O[𝕜; l] g Unhds 0, Vnhds 0, (fun (x : α) => egauge 𝕜 U (f x)) ≤ᶠ[l] fun (x : α) => egauge 𝕜 V (g x)

        f =O[𝕜; l] g (IsBigOTVS 𝕜 l f g) is a generalization of f =O[l] g (IsBigO l f g) that works in topological 𝕜-vector spaces.

        Given two functions f and g taking values in topological vector spaces over a normed field 𝕜, we say that $f = O(g)$ if for any neighborhood of zero U in the codomain of f there exists a neighborhood of zero V in the codomain of g such that $\operatorname{gauge}_{K, U} (f(x)) \le \operatorname{gauge}_{K, V} (g(x))$, where $\operatorname{gauge}_{K, U}(y) = \inf \{‖c‖ \mid y ∈ c • U\}$.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          def Asymptotics.IsThetaTVS (𝕜 : Type u_1) {α : Type u_2} {E : Type u_3} {F : Type u_4} [ENorm 𝕜] [TopologicalSpace E] [TopologicalSpace F] [Zero E] [Zero F] [SMul 𝕜 E] [SMul 𝕜 F] (l : Filter α) (f : αE) (g : αF) :

          We say that f =Θ[𝕜; l] g (IsThetaTVS 𝕜 l f g), if f =O[𝕜; l] g and g =O[𝕜; l] f. It is a generalization of f =Θ[l] g that works in topological 𝕜-vector spaces.

          Equations
          Instances For

            We say that f =Θ[𝕜; l] g (IsThetaTVS 𝕜 l f g), if f =O[𝕜; l] g and g =O[𝕜; l] f. It is a generalization of f =Θ[l] g that works in topological 𝕜-vector spaces.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem Asymptotics.isLittleOTVS_iff_tendsto_div {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {f : αE} {g : αF} {l : Filter α} :
              f =o[𝕜; l] g Unhds 0, Vnhds 0, Filter.Tendsto (fun (x : α) => egauge 𝕜 U (f x) / egauge 𝕜 V (g x)) l (nhds 0)
              theorem Asymptotics.IsLittleOTVS.tendsto_div {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {f : αE} {g : αF} {l : Filter α} :
              f =o[𝕜; l] gUnhds 0, Vnhds 0, Filter.Tendsto (fun (x : α) => egauge 𝕜 U (f x) / egauge 𝕜 V (g x)) l (nhds 0)

              Alias of the forward direction of Asymptotics.isLittleOTVS_iff_tendsto_div.

              theorem Asymptotics.IsLittleOTVS.of_tendsto_div {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {f : αE} {g : αF} {l : Filter α} :
              (∀ Unhds 0, Vnhds 0, Filter.Tendsto (fun (x : α) => egauge 𝕜 U (f x) / egauge 𝕜 V (g x)) l (nhds 0))f =o[𝕜; l] g

              Alias of the reverse direction of Asymptotics.isLittleOTVS_iff_tendsto_div.

              theorem Asymptotics.IsLittleOTVS.exists_eventuallyLE_mul_ennreal {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {f : αE} {g : αF} {l : Filter α} (h : f =o[𝕜; l] g) {U : Set E} (hU : U nhds 0) :
              Vnhds 0, ∀ (ε : ENNReal), ε 0(fun (x : α) => egauge 𝕜 U (f x)) ≤ᶠ[l] fun (x : α) => ε * egauge 𝕜 V (g x)

              A version of IsLittleOTVS.exists_eventuallyLE_mul where ε is quantified over ℝ≥0∞ instead of ℝ≥0.

              theorem Asymptotics.isLittleOTVS_congr {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {f₁ f₂ : αE} {g₁ g₂ : αF} {l : Filter α} (hf : f₁ =ᶠ[l] f₂) (hg : g₁ =ᶠ[l] g₂) :
              f₁ =o[𝕜; l] g₁ f₂ =o[𝕜; l] g₂
              theorem Asymptotics.IsLittleOTVS.congr' {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {f₁ f₂ : αE} {g₁ g₂ : αF} {l : Filter α} (h : f₁ =o[𝕜; l] g₁) (hf : f₁ =ᶠ[l] f₂) (hg : g₁ =ᶠ[l] g₂) :
              f₂ =o[𝕜; l] g₂

              A stronger version of IsLittleOTVS.congr that requires the functions only agree along the filter.

              theorem Asymptotics.IsLittleOTVS.congr {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {f₁ f₂ : αE} {g₁ g₂ : αF} {l : Filter α} (h : f₁ =o[𝕜; l] g₁) (hf : ∀ (x : α), f₁ x = f₂ x) (hg : ∀ (x : α), g₁ x = g₂ x) :
              f₂ =o[𝕜; l] g₂
              theorem Asymptotics.IsLittleOTVS.congr_left {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {f₁ f₂ : αE} {g : αF} {l : Filter α} (h : f₁ =o[𝕜; l] g) (hf : ∀ (x : α), f₁ x = f₂ x) :
              f₂ =o[𝕜; l] g
              theorem Asymptotics.IsLittleOTVS.congr_right {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {f : αE} {g₁ g₂ : αF} {l : Filter α} (h : f =o[𝕜; l] g₁) (hg : ∀ (x : α), g₁ x = g₂ x) :
              f =o[𝕜; l] g₂
              theorem Asymptotics.isBigOTVS_congr {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {f₁ f₂ : αE} {g₁ g₂ : αF} {l : Filter α} (hf : f₁ =ᶠ[l] f₂) (hg : g₁ =ᶠ[l] g₂) :
              f₁ =O[𝕜; l] g₁ f₂ =O[𝕜; l] g₂
              theorem Asymptotics.IsBigOTVS.congr' {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {f₁ f₂ : αE} {g₁ g₂ : αF} {l : Filter α} (h : f₁ =O[𝕜; l] g₁) (hf : f₁ =ᶠ[l] f₂) (hg : g₁ =ᶠ[l] g₂) :
              f₂ =O[𝕜; l] g₂

              A stronger version of IsBigOTVS.congr that requires the functions only agree along the filter.

              theorem Asymptotics.IsBigOTVS.congr {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {f₁ f₂ : αE} {g₁ g₂ : αF} {l : Filter α} (h : f₁ =O[𝕜; l] g₁) (hf : ∀ (x : α), f₁ x = f₂ x) (hg : ∀ (x : α), g₁ x = g₂ x) :
              f₂ =O[𝕜; l] g₂
              theorem Asymptotics.IsBigOTVS.congr_left {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {f₁ f₂ : αE} {g : αF} {l : Filter α} (h : f₁ =O[𝕜; l] g) (hf : ∀ (x : α), f₁ x = f₂ x) :
              f₂ =O[𝕜; l] g
              theorem Asymptotics.IsBigOTVS.congr_right {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {f : αE} {g₁ g₂ : αF} {l : Filter α} (h : f =O[𝕜; l] g₁) (hg : ∀ (x : α), g₁ x = g₂ x) :
              f =O[𝕜; l] g₂
              theorem Asymptotics.IsBigOTVS.refl {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] (f : αE) (l : Filter α) :
              f =O[𝕜; l] f
              theorem Asymptotics.IsBigOTVS.rfl {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] {l : Filter α} {f : αE} :
              f =O[𝕜; l] f
              theorem Asymptotics.IsThetaTVS.refl {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] (f : αE) (l : Filter α) :
              f =Θ[𝕜; l] f
              theorem Asymptotics.IsThetaTVS.rfl {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] {l : Filter α} {f : αE} :
              f =Θ[𝕜; l] f
              theorem Asymptotics.IsLittleOTVS.isBigOTVS {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} {g : αF} (h : f =o[𝕜; l] g) :
              f =O[𝕜; l] g
              theorem Asymptotics.IsThetaTVS.isBigOTVS {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} {g : αF} (h : f =Θ[𝕜; l] g) :
              f =O[𝕜; l] g
              theorem Asymptotics.IsThetaTVS.symm {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} {g : αF} (h : f =Θ[𝕜; l] g) :
              g =Θ[𝕜; l] f
              theorem Asymptotics.isThetaTVS_comm {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} {g : αF} :
              f =Θ[𝕜; l] g g =Θ[𝕜; l] f

              Transitivity lemmas #

              theorem Asymptotics.IsBigOTVS.trans {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [AddCommGroup G] [TopologicalSpace G] [Module 𝕜 G] {l : Filter α} {f : αE} {g : αF} {k : αG} (hfg : f =O[𝕜; l] g) (hgk : g =O[𝕜; l] k) :
              f =O[𝕜; l] k
              instance Asymptotics.instTransIsBigOTVSIsBigOTVS {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [AddCommGroup G] [TopologicalSpace G] [Module 𝕜 G] {l : Filter α} :
              Trans (IsBigOTVS 𝕜 l) (IsBigOTVS 𝕜 l) (IsBigOTVS 𝕜 l)
              Equations
              theorem Asymptotics.IsBigOTVS.trans_isThetaTVS {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [AddCommGroup G] [TopologicalSpace G] [Module 𝕜 G] {l : Filter α} {f : αE} {g : αF} {k : αG} (hfg : f =O[𝕜; l] g) (hgk : g =Θ[𝕜; l] k) :
              f =O[𝕜; l] k
              instance Asymptotics.instTransIsBigOTVSIsThetaTVS {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [AddCommGroup G] [TopologicalSpace G] [Module 𝕜 G] {l : Filter α} :
              Trans (IsBigOTVS 𝕜 l) (IsThetaTVS 𝕜 l) (IsBigOTVS 𝕜 l)
              Equations
              theorem Asymptotics.IsThetaTVS.trans_isBigOTVS {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [AddCommGroup G] [TopologicalSpace G] [Module 𝕜 G] {l : Filter α} {f : αE} {g : αF} {k : αG} (hfg : f =Θ[𝕜; l] g) (hgk : g =O[𝕜; l] k) :
              f =O[𝕜; l] k
              instance Asymptotics.instTransIsThetaOTVSIsBigOTVS {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [AddCommGroup G] [TopologicalSpace G] [Module 𝕜 G] {l : Filter α} :
              Trans (IsThetaTVS 𝕜 l) (IsBigOTVS 𝕜 l) (IsBigOTVS 𝕜 l)
              Equations
              theorem Asymptotics.IsThetaTVS.trans {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [AddCommGroup G] [TopologicalSpace G] [Module 𝕜 G] {l : Filter α} {f : αE} {g : αF} {k : αG} (hfg : f =Θ[𝕜; l] g) (hgk : g =Θ[𝕜; l] k) :
              f =Θ[𝕜; l] k
              instance Asymptotics.instTransIsThetaOTVS {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [AddCommGroup G] [TopologicalSpace G] [Module 𝕜 G] {l : Filter α} :
              Trans (IsThetaTVS 𝕜 l) (IsThetaTVS 𝕜 l) (IsThetaTVS 𝕜 l)
              Equations
              theorem Asymptotics.IsLittleOTVS.trans_isBigOTVS {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [AddCommGroup G] [TopologicalSpace G] [Module 𝕜 G] {l : Filter α} {f : αE} {g : αF} {k : αG} (hfg : f =o[𝕜; l] g) (hgk : g =O[𝕜; l] k) :
              f =o[𝕜; l] k
              instance Asymptotics.instTransIsLittleOTVSIsBigOTVS {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [AddCommGroup G] [TopologicalSpace G] [Module 𝕜 G] {l : Filter α} :
              Trans (IsLittleOTVS 𝕜 l) (IsBigOTVS 𝕜 l) (IsLittleOTVS 𝕜 l)
              Equations
              theorem Asymptotics.IsLittleOTVS.trans_isThetaTVS {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [AddCommGroup G] [TopologicalSpace G] [Module 𝕜 G] {l : Filter α} {f : αE} {g : αF} {k : αG} (hfg : f =o[𝕜; l] g) (hgk : g =Θ[𝕜; l] k) :
              f =o[𝕜; l] k
              instance Asymptotics.instTransIsLittleOTVSIsThetaTVS {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [AddCommGroup G] [TopologicalSpace G] [Module 𝕜 G] {l : Filter α} :
              Trans (IsLittleOTVS 𝕜 l) (IsThetaTVS 𝕜 l) (IsLittleOTVS 𝕜 l)
              Equations
              theorem Asymptotics.IsBigOTVS.trans_isLittleOTVS {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [AddCommGroup G] [TopologicalSpace G] [Module 𝕜 G] {l : Filter α} {f : αE} {g : αF} {k : αG} (hfg : f =O[𝕜; l] g) (hgk : g =o[𝕜; l] k) :
              f =o[𝕜; l] k
              instance Asymptotics.instTransIsBigOTVSIsLittleOTVS {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [AddCommGroup G] [TopologicalSpace G] [Module 𝕜 G] {l : Filter α} :
              Trans (IsBigOTVS 𝕜 l) (IsLittleOTVS 𝕜 l) (IsLittleOTVS 𝕜 l)
              Equations
              theorem Asymptotics.IsThetaTVS.trans_isLittleOTVS {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [AddCommGroup G] [TopologicalSpace G] [Module 𝕜 G] {l : Filter α} {f : αE} {g : αF} {k : αG} (hfg : f =Θ[𝕜; l] g) (hgk : g =o[𝕜; l] k) :
              f =o[𝕜; l] k
              instance Asymptotics.instTransIsThetaTVSIsLittleOTVS {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [AddCommGroup G] [TopologicalSpace G] [Module 𝕜 G] {l : Filter α} :
              Trans (IsThetaTVS 𝕜 l) (IsLittleOTVS 𝕜 l) (IsLittleOTVS 𝕜 l)
              Equations
              theorem Asymptotics.IsLittleOTVS.trans {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [AddCommGroup G] [TopologicalSpace G] [Module 𝕜 G] {l : Filter α} {f : αE} {g : αF} {k : αG} (hfg : f =o[𝕜; l] g) (hgk : g =o[𝕜; l] k) :
              f =o[𝕜; l] k
              instance Asymptotics.instTransIsLittleOTVSIsLittleOTVS {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [AddCommGroup G] [TopologicalSpace G] [Module 𝕜 G] {l : Filter α} :
              Trans (IsLittleOTVS 𝕜 l) (IsLittleOTVS 𝕜 l) (IsLittleOTVS 𝕜 l)
              Equations
              theorem Filter.HasBasis.isLittleOTVS_iff {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} {g : αF} {ιE : Sort u_7} {ιF : Sort u_8} {pE : ιEProp} {pF : ιFProp} {sE : ιESet E} {sF : ιFSet F} (hE : (nhds 0).HasBasis pE sE) (hF : (nhds 0).HasBasis pF sF) :
              f =o[𝕜; l] g ∀ (i : ιE), pE i∃ (j : ιF), pF j ∀ (ε : NNReal), ε 0∀ᶠ (x : α) in l, egauge 𝕜 (sE i) (f x) ε * egauge 𝕜 (sF j) (g x)
              theorem Filter.HasBasis.isBigOTVS_iff {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} {g : αF} {ιE : Sort u_7} {ιF : Sort u_8} {pE : ιEProp} {pF : ιFProp} {sE : ιESet E} {sF : ιFSet F} (hE : (nhds 0).HasBasis pE sE) (hF : (nhds 0).HasBasis pF sF) :
              f =O[𝕜; l] g ∀ (i : ιE), pE i∃ (j : ιF), pF j ∀ᶠ (x : α) in l, egauge 𝕜 (sE i) (f x) egauge 𝕜 (sF j) (g x)
              theorem Asymptotics.IsBigOTVS.of_egauge_le_mul {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} {g : αF} [ContinuousConstSMul 𝕜 F] {ι : Sort u_7} {p : ιProp} {U : ιSet E} (hb : (nhds 0).HasBasis p U) (h : ∀ (i : ι), p i∃ (C : NNReal), Vnhds 0, (fun (x : α) => egauge 𝕜 (U i) (f x)) ≤ᶠ[l] fun (x : α) => C * egauge 𝕜 V (g x)) :
              f =O[𝕜; l] g

              The definition of IsBigOTVS says that for each neighborhood U of the origin in the codomain of f, there exists a neighborhood V of the origin in the codomain of g such that egauge 𝕜 U (f x) ≤ egauge 𝕜 V (g x) eventually along l.

              This lemma shows that it suffices to make this inequality work up to a constant multiplier.

              theorem Asymptotics.isLittleOTVS_iff_smallSets {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} {g : αF} :
              f =o[𝕜; l] g Unhds 0, ∀ᶠ (V : Set F) in (nhds 0).smallSets, ∀ (ε : NNReal), ε 0∀ᶠ (x : α) in l, egauge 𝕜 U (f x) ε * egauge 𝕜 V (g x)
              theorem Asymptotics.IsLittleOTVS.eventually_smallSets {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} {g : αF} :
              f =o[𝕜; l] gUnhds 0, ∀ᶠ (V : Set F) in (nhds 0).smallSets, ∀ (ε : NNReal), ε 0∀ᶠ (x : α) in l, egauge 𝕜 U (f x) ε * egauge 𝕜 V (g x)

              Alias of the forward direction of Asymptotics.isLittleOTVS_iff_smallSets.

              theorem Asymptotics.isBigOTVS_iff_smallSets {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} {g : αF} :
              f =O[𝕜; l] g Unhds 0, ∀ᶠ (V : Set F) in (nhds 0).smallSets, ∀ᶠ (x : α) in l, egauge 𝕜 U (f x) egauge 𝕜 V (g x)
              theorem Asymptotics.IsBigOTVS.eventually_smallSets {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} {g : αF} :
              f =O[𝕜; l] gUnhds 0, ∀ᶠ (V : Set F) in (nhds 0).smallSets, ∀ᶠ (x : α) in l, egauge 𝕜 U (f x) egauge 𝕜 V (g x)

              Alias of the forward direction of Asymptotics.isBigOTVS_iff_smallSets.

              @[simp]
              theorem Asymptotics.isLittleOTVS_map {α : Type u_1} {β : Type u_2} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {f : αE} {g : αF} {k : βα} {l : Filter β} :
              f =o[𝕜; Filter.map k l] g (f k) =o[𝕜; l] (g k)
              @[simp]
              theorem Asymptotics.isBigOTVS_map {α : Type u_1} {β : Type u_2} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {f : αE} {g : αF} {k : βα} {l : Filter β} :
              f =O[𝕜; Filter.map k l] g (f k) =O[𝕜; l] (g k)
              theorem Asymptotics.IsLittleOTVS.mono {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l₁ l₂ : Filter α} {f : αE} {g : αF} (hf : f =o[𝕜; l₁] g) (h : l₂ l₁) :
              f =o[𝕜; l₂] g
              theorem Asymptotics.IsBigOTVS.mono {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l₁ l₂ : Filter α} {f : αE} {g : αF} (hf : f =O[𝕜; l₁] g) (h : l₂ l₁) :
              f =O[𝕜; l₂] g
              theorem Asymptotics.IsLittleOTVS.comp_tendsto {α : Type u_1} {β : Type u_2} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} {g : αF} {k : βα} {lb : Filter β} (h : f =o[𝕜; l] g) (hk : Filter.Tendsto k lb l) :
              (f k) =o[𝕜; lb] (g k)
              theorem Asymptotics.IsBigOTVS.comp_tendsto {α : Type u_1} {β : Type u_2} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} {g : αF} {k : βα} {lb : Filter β} (h : f =O[𝕜; l] g) (hk : Filter.Tendsto k lb l) :
              (f k) =O[𝕜; lb] (g k)
              theorem Asymptotics.isLittleOTVS_sup {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l₁ l₂ : Filter α} {f : αE} {g : αF} :
              f =o[𝕜; l₁l₂] g f =o[𝕜; l₁] g f =o[𝕜; l₂] g
              theorem Asymptotics.IsLittleOTVS.sup {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l₁ l₂ : Filter α} {f : αE} {g : αF} (hf₁ : f =o[𝕜; l₁] g) (hf₂ : f =o[𝕜; l₂] g) :
              f =o[𝕜; l₁l₂] g
              theorem ContinuousLinearMap.isBigOTVS_id {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter E} (f : E →L[𝕜] F) :
              f =O[𝕜; l] id
              theorem ContinuousLinearMap.isBigOTVS_comp {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} (g : E →L[𝕜] F) :
              (g f) =O[𝕜; l] f
              theorem ContinuousLinearMap.isBigOTVS_fun_comp {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} (g : E →L[𝕜] F) :
              (fun (x : α) => g (f x)) =O[𝕜; l] f
              theorem LinearMap.isBigOTVS_rev_comp {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} (g : E →ₗ[𝕜] F) (hg : Filter.comap (⇑g) (nhds 0) nhds 0) :
              f =O[𝕜; l] (g f)
              theorem ContinuousLinearMap.isThetaTVS_comp {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} (g : E →L[𝕜] F) (hg : Topology.IsInducing g) :
              (g f) =Θ[𝕜; l] f
              @[simp]
              theorem Asymptotics.IsLittleOTVS.zero {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] (g : αF) (l : Filter α) :
              0 =o[𝕜; l] g
              theorem Asymptotics.isLittleOTVS_insert {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {f : αE} {g : αF} [TopologicalSpace α] {x : α} {s : Set α} (h : f x = 0) :
              f =o[𝕜; nhdsWithin x (insert x s)] g f =o[𝕜; nhdsWithin x s] g
              theorem Asymptotics.IsLittleOTVS.insert {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {f : αE} {g : αF} [TopologicalSpace α] {x : α} {s : Set α} (h : f =o[𝕜; nhdsWithin x s] g) (hf : f x = 0) :
              @[simp]
              theorem Asymptotics.IsLittleOTVS.bot {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {f : αE} {g : αF} :
              f =o[𝕜; ] g
              theorem Asymptotics.IsLittleOTVS.prodMk {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [AddCommGroup G] [TopologicalSpace G] [Module 𝕜 G] {l : Filter α} {f : αE} {g : αF} [ContinuousSMul 𝕜 E] [ContinuousSMul 𝕜 F] {k : αG} (hf : f =o[𝕜; l] k) (hg : g =o[𝕜; l] k) :
              (fun (x : α) => (f x, g x)) =o[𝕜; l] k
              theorem Asymptotics.IsLittleOTVS.fst {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [AddCommGroup G] [TopologicalSpace G] [Module 𝕜 G] {l : Filter α} {f : αE × F} {g : αG} (h : f =o[𝕜; l] g) :
              (fun (x : α) => (f x).1) =o[𝕜; l] g
              theorem Asymptotics.IsLittleOTVS.snd {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [AddCommGroup G] [TopologicalSpace G] [Module 𝕜 G] {l : Filter α} {f : αE × F} {g : αG} (h : f =o[𝕜; l] g) :
              (fun (x : α) => (f x).2) =o[𝕜; l] g
              @[simp]
              theorem Asymptotics.isLittleOTVS_prodMk_left {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [AddCommGroup G] [TopologicalSpace G] [Module 𝕜 G] {l : Filter α} {f : αE} {g : αF} [ContinuousSMul 𝕜 E] [ContinuousSMul 𝕜 F] {k : αG} :
              (fun (x : α) => (f x, g x)) =o[𝕜; l] k f =o[𝕜; l] k g =o[𝕜; l] k
              theorem Asymptotics.IsBigOTVS.prodMk {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [AddCommGroup G] [TopologicalSpace G] [Module 𝕜 G] {l : Filter α} {f : αE} {g : αF} [ContinuousSMul 𝕜 E] [ContinuousSMul 𝕜 F] {k : αG} (hf : f =O[𝕜; l] k) (hg : g =O[𝕜; l] k) :
              (fun (x : α) => (f x, g x)) =O[𝕜; l] k
              theorem Asymptotics.IsBigOTVS.fst {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [AddCommGroup G] [TopologicalSpace G] [Module 𝕜 G] {l : Filter α} {f : αE × F} {g : αG} (h : f =O[𝕜; l] g) :
              (fun (x : α) => (f x).1) =O[𝕜; l] g
              theorem Asymptotics.IsBigOTVS.snd {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [AddCommGroup G] [TopologicalSpace G] [Module 𝕜 G] {l : Filter α} {f : αE × F} {g : αG} (h : f =O[𝕜; l] g) :
              (fun (x : α) => (f x).2) =O[𝕜; l] g
              @[simp]
              theorem Asymptotics.isBigOTVS_prodMk_left {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} {G : Type u_6} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [AddCommGroup G] [TopologicalSpace G] [Module 𝕜 G] {l : Filter α} {f : αE} {g : αF} [ContinuousSMul 𝕜 E] [ContinuousSMul 𝕜 F] {k : αG} :
              (fun (x : α) => (f x, g x)) =O[𝕜; l] k f =O[𝕜; l] k g =O[𝕜; l] k
              theorem Asymptotics.IsLittleOTVS.add {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [ContinuousAdd E] [ContinuousSMul 𝕜 E] {f₁ f₂ : αE} {g : αF} {l : Filter α} (h₁ : f₁ =o[𝕜; l] g) (h₂ : f₂ =o[𝕜; l] g) :
              (f₁ + f₂) =o[𝕜; l] g
              theorem Asymptotics.IsBigOTVS.add {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [ContinuousAdd E] [ContinuousSMul 𝕜 E] {f₁ f₂ : αE} {g : αF} {l : Filter α} (h₁ : f₁ =O[𝕜; l] g) (h₂ : f₂ =O[𝕜; l] g) :
              (f₁ + f₂) =O[𝕜; l] g
              theorem Asymptotics.IsLittleOTVS.triangle {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [ContinuousAdd E] [ContinuousSMul 𝕜 E] {f₁ f₂ f₃ : αE} {g : αF} {l : Filter α} (h₁ : (f₁ - f₂) =o[𝕜; l] g) (h₂ : (f₂ - f₃) =o[𝕜; l] g) :
              (f₁ - f₃) =o[𝕜; l] g
              theorem Asymptotics.IsBigOTVS.triangle {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] [ContinuousAdd E] [ContinuousSMul 𝕜 E] {f₁ f₂ f₃ : αE} {g : αF} {l : Filter α} (h₁ : (f₁ - f₂) =O[𝕜; l] g) (h₂ : (f₂ - f₃) =O[𝕜; l] g) :
              (f₁ - f₃) =O[𝕜; l] g
              theorem Asymptotics.IsBigOTVS.neg_left {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} {g : αF} [ContinuousNeg E] (h : f =O[𝕜; l] g) :
              (-f) =O[𝕜; l] g
              @[simp]
              theorem Asymptotics.isBigOTVS_neg_left {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} {g : αF} [ContinuousNeg E] :
              (-f) =O[𝕜; l] g f =O[𝕜; l] g
              @[simp]
              theorem Asymptotics.isBigOTVS_fun_neg_left {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} {g : αF} [ContinuousNeg E] :
              (fun (x : α) => -f x) =O[𝕜; l] g f =O[𝕜; l] g
              theorem Asymptotics.IsLittleOTVS.neg_left {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} {g : αF} [ContinuousNeg E] (h : f =o[𝕜; l] g) :
              (-f) =o[𝕜; l] g
              @[simp]
              theorem Asymptotics.isLittleOTVS_neg_left {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} {g : αF} [ContinuousNeg E] :
              (-f) =o[𝕜; l] g f =o[𝕜; l] g
              @[simp]
              theorem Asymptotics.isLittleOTVS_fun_neg_left {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} {g : αF} [ContinuousNeg E] :
              (fun (x : α) => -f x) =o[𝕜; l] g f =o[𝕜; l] g
              theorem Asymptotics.IsLittleOTVS.symm {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {g : αF} [ContinuousNeg E] {f₁ f₂ : αE} (h : (f₁ - f₂) =o[𝕜; l] g) :
              (f₂ - f₁) =o[𝕜; l] g
              theorem Asymptotics.IsLittleOTVS.fun_symm {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {g : αF} [ContinuousNeg E] {f₁ f₂ : αE} (h : (fun (i : α) => f₁ i - f₂ i) =o[𝕜; l] g) :
              (fun (i : α) => f₂ i - f₁ i) =o[𝕜; l] g

              Eta-expanded form of Asymptotics.IsLittleOTVS.symm

              theorem Asymptotics.isLittleOTVS_comm {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {g : αF} [ContinuousNeg E] {f₁ f₂ : αE} :
              (f₁ - f₂) =o[𝕜; l] g (f₂ - f₁) =o[𝕜; l] g
              theorem Asymptotics.isLittleOTVS_fun_comm {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {g : αF} [ContinuousNeg E] {f₁ f₂ : αE} :
              (fun (a : α) => f₁ a - f₂ a) =o[𝕜; l] g (fun (a : α) => f₂ a - f₁ a) =o[𝕜; l] g
              theorem Asymptotics.IsBigOTVS.symm {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {g : αF} [ContinuousNeg E] {f₁ f₂ : αE} (h : (f₁ - f₂) =O[𝕜; l] g) :
              (f₂ - f₁) =O[𝕜; l] g
              theorem Asymptotics.IsBigOTVS.fun_symm {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {g : αF} [ContinuousNeg E] {f₁ f₂ : αE} (h : (fun (i : α) => f₁ i - f₂ i) =O[𝕜; l] g) :
              (fun (i : α) => f₂ i - f₁ i) =O[𝕜; l] g

              Eta-expanded form of Asymptotics.IsBigOTVS.symm

              theorem Asymptotics.isBigOTVS_comm {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {g : αF} [ContinuousNeg E] {f₁ f₂ : αE} :
              (f₁ - f₂) =O[𝕜; l] g (f₂ - f₁) =O[𝕜; l] g
              theorem Asymptotics.isBigOTVS_fun_comm {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {g : αF} [ContinuousNeg E] {f₁ f₂ : αE} :
              (fun (a : α) => f₁ a - f₂ a) =O[𝕜; l] g (fun (a : α) => f₂ a - f₁ a) =O[𝕜; l] g
              theorem Asymptotics.IsBigOTVS.neg_right {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} {g : αF} [ContinuousNeg F] (h : f =O[𝕜; l] g) :
              f =O[𝕜; l] (-g)
              @[simp]
              theorem Asymptotics.isBigOTVS_neg_right {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} {g : αF} [ContinuousNeg F] :
              f =O[𝕜; l] (-g) f =O[𝕜; l] g
              @[simp]
              theorem Asymptotics.isBigOTVS_fun_neg_right {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} {g : αF} [ContinuousNeg F] :
              (f =O[𝕜; l] fun (x : α) => -g x) f =O[𝕜; l] g
              theorem Asymptotics.IsLittleOTVS.neg_right {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} {g : αF} [ContinuousNeg F] (h : f =o[𝕜; l] g) :
              f =o[𝕜; l] (-g)
              @[simp]
              theorem Asymptotics.isLittleOTVS_neg_right {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} {g : αF} [ContinuousNeg F] :
              f =o[𝕜; l] (-g) f =o[𝕜; l] g
              @[simp]
              theorem Asymptotics.isLittleOTVS_fun_neg_right {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} {g : αF} [ContinuousNeg F] :
              (f =o[𝕜; l] fun (x : α) => -g x) f =o[𝕜; l] g
              theorem Asymptotics.IsLittleOTVS.pi {α : Type u_1} {𝕜 : Type u_3} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {g : αF} {ι : Type u_7} {E : ιType u_8} [(i : ι) → AddCommGroup (E i)] [(i : ι) → Module 𝕜 (E i)] [(i : ι) → TopologicalSpace (E i)] [∀ (i : ι), ContinuousSMul 𝕜 (E i)] {f : (i : ι) → αE i} (h : ∀ (i : ι), f i =o[𝕜; l] g) :
              (fun (x : α) (i : ι) => f i x) =o[𝕜; l] g
              theorem Asymptotics.IsLittleOTVS.proj {α : Type u_1} {𝕜 : Type u_3} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {g : αF} {ι : Type u_7} {E : ιType u_8} [(i : ι) → AddCommGroup (E i)] [(i : ι) → Module 𝕜 (E i)] [(i : ι) → TopologicalSpace (E i)] {f : α(i : ι) → E i} (h : f =o[𝕜; l] g) (i : ι) :
              (fun (x : α) => f x i) =o[𝕜; l] g
              theorem Asymptotics.isLittleOTVS_pi {α : Type u_1} {𝕜 : Type u_3} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {g : αF} {ι : Type u_7} {E : ιType u_8} [(i : ι) → AddCommGroup (E i)] [(i : ι) → Module 𝕜 (E i)] [(i : ι) → TopologicalSpace (E i)] [∀ (i : ι), ContinuousSMul 𝕜 (E i)] {f : α(i : ι) → E i} :
              f =o[𝕜; l] g ∀ (i : ι), (fun (x : α) => f x i) =o[𝕜; l] g
              theorem Asymptotics.IsBigOTVS.pi {α : Type u_1} {𝕜 : Type u_3} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {g : αF} {ι : Type u_7} {E : ιType u_8} [(i : ι) → AddCommGroup (E i)] [(i : ι) → Module 𝕜 (E i)] [(i : ι) → TopologicalSpace (E i)] [∀ (i : ι), ContinuousSMul 𝕜 (E i)] {f : (i : ι) → αE i} (h : ∀ (i : ι), f i =O[𝕜; l] g) :
              (fun (x : α) (i : ι) => f i x) =O[𝕜; l] g
              theorem Asymptotics.IsBigOTVS.proj {α : Type u_1} {𝕜 : Type u_3} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {g : αF} {ι : Type u_7} {E : ιType u_8} [(i : ι) → AddCommGroup (E i)] [(i : ι) → Module 𝕜 (E i)] [(i : ι) → TopologicalSpace (E i)] {f : α(i : ι) → E i} (h : f =O[𝕜; l] g) (i : ι) :
              (fun (x : α) => f x i) =O[𝕜; l] g
              theorem Asymptotics.isBigOTVS_pi {α : Type u_1} {𝕜 : Type u_3} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {g : αF} {ι : Type u_7} {E : ιType u_8} [(i : ι) → AddCommGroup (E i)] [(i : ι) → Module 𝕜 (E i)] [(i : ι) → TopologicalSpace (E i)] [∀ (i : ι), ContinuousSMul 𝕜 (E i)] {f : α(i : ι) → E i} :
              f =O[𝕜; l] g ∀ (i : ι), (fun (x : α) => f x i) =O[𝕜; l] g
              theorem Asymptotics.IsLittleOTVS.smul_left {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [AddCommGroup F] [TopologicalSpace F] [Module 𝕜 F] {l : Filter α} {f : αE} {g : αF} (h : f =o[𝕜; l] g) (c : α𝕜) :
              (fun (x : α) => c x f x) =o[𝕜; l] fun (x : α) => c x g x
              theorem Asymptotics.isLittleOTVS_one {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] {l : Filter α} {f : αE} [ContinuousSMul 𝕜 E] :
              f =o[𝕜; l] 1 Filter.Tendsto f l (nhds 0)
              theorem Asymptotics.IsLittleOTVS.tendsto_inv_smul {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] {l : Filter α} [ContinuousSMul 𝕜 E] {f : α𝕜} {g : αE} (h : g =o[𝕜; l] f) :
              Filter.Tendsto (fun (x : α) => (f x)⁻¹ g x) l (nhds 0)
              theorem Asymptotics.isLittleOTVS_iff_tendsto_inv_smul {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] [ContinuousSMul 𝕜 E] {f : α𝕜} {g : αE} {l : Filter α} (h₀ : ∀ᶠ (x : α) in l, f x = 0g x = 0) :
              g =o[𝕜; l] f Filter.Tendsto (fun (x : α) => (f x)⁻¹ g x) l (nhds 0)
              theorem Asymptotics.Filter.Tendsto.isBigOTVS_one {α : Type u_1} (𝕜 : Type u_3) {E : Type u_4} [NontriviallyNormedField 𝕜] [AddCommGroup E] [TopologicalSpace E] [Module 𝕜 E] {l : Filter α} {f : αE} [ContinuousAdd E] [ContinuousSMul 𝕜 E] {x : E} (h : Filter.Tendsto f l (nhds x)) :
              f =O[𝕜; l] fun (x : α) => 1

              If f converges along l to a finite limit x, then f =O[𝕜, l] 1.

              theorem Asymptotics.isLittleOTVS_iff_isLittleO {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] {f : αE} {g : αF} {l : Filter α} :
              f =o[𝕜; l] g f =o[l] g
              theorem Asymptotics.IsLittleO.isLittleOTVS {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] {f : αE} {g : αF} {l : Filter α} :
              f =o[l] gf =o[𝕜; l] g

              Alias of the reverse direction of Asymptotics.isLittleOTVS_iff_isLittleO.

              theorem Asymptotics.isLittleOTVS.isLittleO {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] {f : αE} {g : αF} {l : Filter α} :
              f =o[𝕜; l] gf =o[l] g

              Alias of the forward direction of Asymptotics.isLittleOTVS_iff_isLittleO.

              theorem Asymptotics.isBigOTVS_iff_isBigO {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] {f : αE} {g : αF} {l : Filter α} :
              f =O[𝕜; l] g f =O[l] g
              theorem Asymptotics.isBigOTVS.isBigO {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] {f : αE} {g : αF} {l : Filter α} :
              f =O[𝕜; l] gf =O[l] g

              Alias of the forward direction of Asymptotics.isBigOTVS_iff_isBigO.

              theorem Asymptotics.IsBigO.isBigOTVS {α : Type u_1} {𝕜 : Type u_3} {E : Type u_4} {F : Type u_5} [NontriviallyNormedField 𝕜] [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NormedSpace 𝕜 E] [NormedSpace 𝕜 F] {f : αE} {g : αF} {l : Filter α} :
              f =O[l] gf =O[𝕜; l] g

              Alias of the reverse direction of Asymptotics.isBigOTVS_iff_isBigO.