Documentation

Mathlib.Analysis.BoxIntegral.Partition.Split

Split a box along one or more hyperplanes #

Main definitions #

A hyperplane {x : ι → ℝ | x i = a} splits a rectangular box I : BoxIntegral.Box ι into two smaller boxes. If a ∉ Ioo (I.lower i, I.upper i), then one of these boxes is empty, so it is not a box in the sense of BoxIntegral.Box.

We introduce the following definitions.

Main results #

The main result BoxIntegral.Prepartition.exists_iUnion_eq_diff says that any prepartition π of I admits a prepartition π' of I that covers exactly I \ π.iUnion. One of these prepartitions is available as BoxIntegral.Prepartition.compl.

Tags #

rectangular box, partition, hyperplane

def BoxIntegral.Box.splitLower {ι : Type u_1} (I : Box ι) (i : ι) (x : ) :

Given a box I and x ∈ (I.lower i, I.upper i), the hyperplane {y : ι → ℝ | y i = x} splits I into two boxes. BoxIntegral.Box.splitLower I i x is the box I ∩ {y | y i ≤ x} (if it is nonempty). As usual, we represent a box that may be empty as WithBot (BoxIntegral.Box ι).

Equations
Instances For
    @[simp]
    theorem BoxIntegral.Box.coe_splitLower {ι : Type u_1} {I : Box ι} {i : ι} {x : } :
    (I.splitLower i x) = I {y : ι | y i x}
    theorem BoxIntegral.Box.splitLower_le {ι : Type u_1} {I : Box ι} {i : ι} {x : } :
    I.splitLower i x I
    @[simp]
    theorem BoxIntegral.Box.splitLower_eq_bot {ι : Type u_1} {I : Box ι} {i : ι} {x : } :
    I.splitLower i x = x I.lower i
    @[simp]
    theorem BoxIntegral.Box.splitLower_eq_self {ι : Type u_1} {I : Box ι} {i : ι} {x : } :
    I.splitLower i x = I I.upper i x
    theorem BoxIntegral.Box.splitLower_def {ι : Type u_1} {I : Box ι} [DecidableEq ι] {i : ι} {x : } (h : x Set.Ioo (I.lower i) (I.upper i)) (h' : ∀ (j : ι), I.lower j < Function.update I.upper i x j := ) :
    I.splitLower i x = { lower := I.lower, upper := Function.update I.upper i x, lower_lt_upper := h' }
    def BoxIntegral.Box.splitUpper {ι : Type u_1} (I : Box ι) (i : ι) (x : ) :

    Given a box I and x ∈ (I.lower i, I.upper i), the hyperplane {y : ι → ℝ | y i = x} splits I into two boxes. BoxIntegral.Box.splitUpper I i x is the box I ∩ {y | x < y i} (if it is nonempty). As usual, we represent a box that may be empty as WithBot (BoxIntegral.Box ι).

    Equations
    Instances For
      @[simp]
      theorem BoxIntegral.Box.coe_splitUpper {ι : Type u_1} {I : Box ι} {i : ι} {x : } :
      (I.splitUpper i x) = I {y : ι | x < y i}
      theorem BoxIntegral.Box.splitUpper_le {ι : Type u_1} {I : Box ι} {i : ι} {x : } :
      I.splitUpper i x I
      @[simp]
      theorem BoxIntegral.Box.splitUpper_eq_bot {ι : Type u_1} {I : Box ι} {i : ι} {x : } :
      I.splitUpper i x = I.upper i x
      @[simp]
      theorem BoxIntegral.Box.splitUpper_eq_self {ι : Type u_1} {I : Box ι} {i : ι} {x : } :
      I.splitUpper i x = I x I.lower i
      theorem BoxIntegral.Box.splitUpper_def {ι : Type u_1} {I : Box ι} [DecidableEq ι] {i : ι} {x : } (h : x Set.Ioo (I.lower i) (I.upper i)) (h' : ∀ (j : ι), Function.update I.lower i x j < I.upper j := ) :
      I.splitUpper i x = { lower := Function.update I.lower i x, upper := I.upper, lower_lt_upper := h' }
      theorem BoxIntegral.Box.disjoint_splitLower_splitUpper {ι : Type u_1} (I : Box ι) (i : ι) (x : ) :
      Disjoint (I.splitLower i x) (I.splitUpper i x)
      theorem BoxIntegral.Box.splitLower_ne_splitUpper {ι : Type u_1} (I : Box ι) (i : ι) (x : ) :
      I.splitLower i x I.splitUpper i x
      def BoxIntegral.Prepartition.split {ι : Type u_1} (I : Box ι) (i : ι) (x : ) :

      The partition of I : Box ι into the boxes I ∩ {y | y ≤ x i} and I ∩ {y | x i < y}. One of these boxes can be empty, then this partition is just the single-box partition .

      Equations
      Instances For
        @[simp]
        theorem BoxIntegral.Prepartition.mem_split_iff {ι : Type u_1} {I J : Box ι} {i : ι} {x : } :
        J split I i x J = I.splitLower i x J = I.splitUpper i x
        theorem BoxIntegral.Prepartition.mem_split_iff' {ι : Type u_1} {I J : Box ι} {i : ι} {x : } :
        J split I i x J = I {y : ι | y i x} J = I {y : ι | x < y i}
        @[simp]
        theorem BoxIntegral.Prepartition.iUnion_split {ι : Type u_1} (I : Box ι) (i : ι) (x : ) :
        (split I i x).iUnion = I
        theorem BoxIntegral.Prepartition.isPartitionSplit {ι : Type u_1} (I : Box ι) (i : ι) (x : ) :
        (split I i x).IsPartition
        theorem BoxIntegral.Prepartition.sum_split_boxes {ι : Type u_1} {M : Type u_3} [AddCommMonoid M] (I : Box ι) (i : ι) (x : ) (f : Box ιM) :
        J(split I i x).boxes, f J = Option.elim' 0 f (I.splitLower i x) + Option.elim' 0 f (I.splitUpper i x)
        theorem BoxIntegral.Prepartition.split_of_not_mem_Ioo {ι : Type u_1} {I : Box ι} {i : ι} {x : } (h : xSet.Ioo (I.lower i) (I.upper i)) :
        split I i x =

        If x ∉ (I.lower i, I.upper i), then the hyperplane {y | y i = x} does not split I.

        theorem BoxIntegral.Prepartition.coe_eq_of_mem_split_of_mem_le {ι : Type u_1} {I J : Box ι} {i : ι} {x : } {y : ι} (h₁ : J split I i x) (h₂ : y J) (h₃ : y i x) :
        J = I {y : ι | y i x}
        theorem BoxIntegral.Prepartition.coe_eq_of_mem_split_of_lt_mem {ι : Type u_1} {I J : Box ι} {i : ι} {x : } {y : ι} (h₁ : J split I i x) (h₂ : y J) (h₃ : x < y i) :
        J = I {y : ι | x < y i}
        @[simp]
        theorem BoxIntegral.Prepartition.restrict_split {ι : Type u_1} {I J : Box ι} (h : I J) (i : ι) (x : ) :
        (split J i x).restrict I = split I i x
        theorem BoxIntegral.Prepartition.inf_split {ι : Type u_1} {I : Box ι} (π : Prepartition I) (i : ι) (x : ) :
        π split I i x = π.biUnion fun (J : Box ι) => split J i x
        def BoxIntegral.Prepartition.splitMany {ι : Type u_1} (I : Box ι) (s : Finset (ι × )) :

        Split a box along many hyperplanes {y | y i = x}; each hyperplane is given by the pair (i x).

        Equations
        Instances For
          @[simp]
          theorem BoxIntegral.Prepartition.splitMany_insert {ι : Type u_1} (I : Box ι) (s : Finset (ι × )) (p : ι × ) :
          splitMany I (insert p s) = splitMany I s split I p.1 p.2
          theorem BoxIntegral.Prepartition.splitMany_le_split {ι : Type u_1} (I : Box ι) {s : Finset (ι × )} {p : ι × } (hp : p s) :
          splitMany I s split I p.1 p.2
          theorem BoxIntegral.Prepartition.isPartition_splitMany {ι : Type u_1} (I : Box ι) (s : Finset (ι × )) :
          (splitMany I s).IsPartition
          @[simp]
          theorem BoxIntegral.Prepartition.iUnion_splitMany {ι : Type u_1} (I : Box ι) (s : Finset (ι × )) :
          (splitMany I s).iUnion = I
          theorem BoxIntegral.Prepartition.inf_splitMany {ι : Type u_1} {I : Box ι} (π : Prepartition I) (s : Finset (ι × )) :
          π splitMany I s = π.biUnion fun (J : Box ι) => splitMany J s
          theorem BoxIntegral.Prepartition.not_disjoint_imp_le_of_subset_of_mem_splitMany {ι : Type u_1} {I J Js : Box ι} {s : Finset (ι × )} (H : ∀ (i : ι), {(i, J.lower i), (i, J.upper i)} s) (HJs : Js splitMany I s) (Hn : ¬Disjoint J Js) :
          Js J

          Let s : Finset (ι × ℝ) be a set of hyperplanes {x : ι → ℝ | x i = r} in ι → ℝ encoded as pairs (i, r). Suppose that this set contains all faces of a box J. The hyperplanes of s split a box I into subboxes. Let Js be one of them. If J and Js have nonempty intersection, then Js is a subbox of J.

          theorem BoxIntegral.Prepartition.eventually_not_disjoint_imp_le_of_mem_splitMany {ι : Type u_1} [Finite ι] (s : Finset (Box ι)) :
          ∀ᶠ (t : Finset (ι × )) in Filter.atTop, ∀ (I J : Box ι), J sJ'splitMany I t, ¬Disjoint J J'J' J

          Let s be a finite set of boxes in ℝⁿ = ι → ℝ. Then there exists a finite set t₀ of hyperplanes (namely, the set of all hyperfaces of boxes in s) such that for any t ⊇ t₀ and any box I in ℝⁿ the following holds. The hyperplanes from t split I into subboxes. Let J' be one of them, and let J be one of the boxes in s. If these boxes have a nonempty intersection, then J' ≤ J.

          theorem BoxIntegral.Prepartition.eventually_splitMany_inf_eq_filter {ι : Type u_1} {I : Box ι} [Finite ι] (π : Prepartition I) :
          ∀ᶠ (t : Finset (ι × )) in Filter.atTop, π splitMany I t = (splitMany I t).filter fun (J : Box ι) => J π.iUnion
          theorem BoxIntegral.Prepartition.exists_splitMany_inf_eq_filter_of_finite {ι : Type u_1} {I : Box ι} [Finite ι] (s : Set (Prepartition I)) (hs : s.Finite) :
          ∃ (t : Finset (ι × )), πs, π splitMany I t = (splitMany I t).filter fun (J : Box ι) => J π.iUnion
          theorem BoxIntegral.Prepartition.IsPartition.exists_splitMany_le {ι : Type u_1} [Finite ι] {I : Box ι} {π : Prepartition I} (h : π.IsPartition) :
          ∃ (s : Finset (ι × )), splitMany I s π

          If π is a partition of I, then there exists a finite set s of hyperplanes such that splitMany I s ≤ π.

          theorem BoxIntegral.Prepartition.exists_iUnion_eq_diff {ι : Type u_1} {I : Box ι} [Finite ι] (π : Prepartition I) :
          ∃ (π' : Prepartition I), π'.iUnion = I \ π.iUnion

          For every prepartition π of I there exists a prepartition that covers exactly I \ π.iUnion.

          def BoxIntegral.Prepartition.compl {ι : Type u_1} {I : Box ι} [Finite ι] (π : Prepartition I) :

          If π is a prepartition of I, then π.compl is a prepartition of I such that π.compl.iUnion = I \ π.iUnion.

          Equations
          • π.compl = .choose
          Instances For
            @[simp]
            theorem BoxIntegral.Prepartition.iUnion_compl {ι : Type u_1} {I : Box ι} [Finite ι] (π : Prepartition I) :
            π.compl.iUnion = I \ π.iUnion
            theorem BoxIntegral.Prepartition.compl_congr {ι : Type u_1} {I : Box ι} [Finite ι] {π₁ π₂ : Prepartition I} (h : π₁.iUnion = π₂.iUnion) :
            π₁.compl = π₂.compl

            Since the definition of BoxIntegral.Prepartition.compl uses Exists.choose, the result depends only on π.iUnion.

            theorem BoxIntegral.Prepartition.IsPartition.compl_eq_bot {ι : Type u_1} {I : Box ι} [Finite ι] {π : Prepartition I} (h : π.IsPartition) :
            π.compl =
            @[simp]
            theorem BoxIntegral.Prepartition.compl_top {ι : Type u_1} {I : Box ι} [Finite ι] :
            .compl =