Analyticity of Harmonic Functions #
If f : ℂ → ℝ
is harmonic at x
, we show that ∂f/∂1 - I • ∂f/∂I
is complex-analytic at x
. If
f
is harmonic on an open ball, then it is the real part of a function F : ℂ → ℂ
that is
holomorphic on the ball.
TODO: Show that harmonic functions are real-analytic.
theorem
HarmonicAt.differentiableAt_complex_partial
{f : ℂ → ℝ}
{x : ℂ}
(hf : InnerProductSpace.HarmonicAt f x)
:
If f : ℂ → ℝ
is harmonic at x
, then ∂f/∂1 - I • ∂f/∂I
is complex differentiable at x
.
theorem
harmonic_is_realOfHolomorphic
{f : ℂ → ℝ}
{z : ℂ}
{R : ℝ}
(hf : InnerProductSpace.HarmonicOnNhd f (Metric.ball z R))
:
∃ (F : ℂ → ℂ), AnalyticOnNhd ℂ F (Metric.ball z R) ∧ Set.EqOn (fun (z : ℂ) => (F z).re) f (Metric.ball z R)