Documentation

Mathlib.Analysis.Complex.Harmonic.Analytic

Analyticity of Harmonic Functions #

If f : ℂ → ℝ is harmonic at x, we show that ∂f/∂1 - I • ∂f/∂I is complex-analytic at x. If f is harmonic on an open ball, then it is the real part of a function F : ℂ → ℂ that is holomorphic on the ball.

TODO: Show that harmonic functions are real-analytic.

If f : ℂ → ℝ is harmonic at x, then ∂f/∂1 - I • ∂f/∂I is complex differentiable at x.

theorem HarmonicAt.analyticAt_complex_partial {f : } {x : } (hf : InnerProductSpace.HarmonicAt f x) :
AnalyticAt (fun (z : ) => ((fderiv f z) 1) - Complex.I * ((fderiv f z) Complex.I)) x

If f : ℂ → ℝ is harmonic at x, then ∂f/∂1 - I • ∂f/∂I is complex analytic at x.

theorem harmonic_is_realOfHolomorphic {f : } {z : } {R : } (hf : InnerProductSpace.HarmonicOnNhd f (Metric.ball z R)) :
∃ (F : ), AnalyticOnNhd F (Metric.ball z R) Set.EqOn (fun (z : ) => (F z).re) f (Metric.ball z R)