Quasiconvex and quasiconcave functions #
This file defines quasiconvexity, quasiconcavity and quasilinearity of functions, which are generalizations of unimodality and monotonicity. Convexity implies quasiconvexity, concavity implies quasiconcavity, and monotonicity implies quasilinearity.
Main declarations #
QuasiconvexOn 𝕜 s f
: Quasiconvexity of the functionf
on the sets
with scalars𝕜
. This means that, for allr
,{x ∈ s | f x ≤ r}
is𝕜
-convex.QuasiconcaveOn 𝕜 s f
: Quasiconcavity of the functionf
on the sets
with scalars𝕜
. This means that, for allr
,{x ∈ s | r ≤ f x}
is𝕜
-convex.QuasilinearOn 𝕜 s f
: Quasilinearity of the functionf
on the sets
with scalars𝕜
. This means thatf
is both quasiconvex and quasiconcave.
References #
def
QuasiconvexOn
(𝕜 : Type u_1)
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[LE β]
[SMul 𝕜 E]
(s : Set E)
(f : E → β)
:
A function is quasiconvex if all its sublevels are convex.
This means that, for all r
, {x ∈ s | f x ≤ r}
is 𝕜
-convex.
Instances For
def
QuasiconcaveOn
(𝕜 : Type u_1)
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[LE β]
[SMul 𝕜 E]
(s : Set E)
(f : E → β)
:
A function is quasiconcave if all its superlevels are convex.
This means that, for all r
, {x ∈ s | r ≤ f x}
is 𝕜
-convex.
Instances For
def
QuasilinearOn
(𝕜 : Type u_1)
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[LE β]
[SMul 𝕜 E]
(s : Set E)
(f : E → β)
:
A function is quasilinear if it is both quasiconvex and quasiconcave.
This means that, for all r
,
the sets {x ∈ s | f x ≤ r}
and {x ∈ s | r ≤ f x}
are 𝕜
-convex.
Equations
- QuasilinearOn 𝕜 s f = (QuasiconvexOn 𝕜 s f ∧ QuasiconcaveOn 𝕜 s f)
Instances For
theorem
QuasiconvexOn.dual
{𝕜 : Type u_1}
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[LE β]
[SMul 𝕜 E]
{s : Set E}
{f : E → β}
:
QuasiconvexOn 𝕜 s f → QuasiconcaveOn 𝕜 s (⇑OrderDual.toDual ∘ f)
theorem
QuasiconcaveOn.dual
{𝕜 : Type u_1}
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[LE β]
[SMul 𝕜 E]
{s : Set E}
{f : E → β}
:
QuasiconcaveOn 𝕜 s f → QuasiconvexOn 𝕜 s (⇑OrderDual.toDual ∘ f)
theorem
QuasilinearOn.dual
{𝕜 : Type u_1}
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[LE β]
[SMul 𝕜 E]
{s : Set E}
{f : E → β}
:
QuasilinearOn 𝕜 s f → QuasilinearOn 𝕜 s (⇑OrderDual.toDual ∘ f)
theorem
Convex.quasiconvexOn_of_convex_le
{𝕜 : Type u_1}
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[LE β]
[SMul 𝕜 E]
{s : Set E}
{f : E → β}
(hs : Convex 𝕜 s)
(h : ∀ (r : β), Convex 𝕜 {x : E | f x ≤ r})
:
QuasiconvexOn 𝕜 s f
theorem
Convex.quasiconcaveOn_of_convex_ge
{𝕜 : Type u_1}
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[LE β]
[SMul 𝕜 E]
{s : Set E}
{f : E → β}
(hs : Convex 𝕜 s)
(h : ∀ (r : β), Convex 𝕜 {x : E | r ≤ f x})
:
QuasiconcaveOn 𝕜 s f
theorem
QuasiconvexOn.convex
{𝕜 : Type u_1}
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[LE β]
[SMul 𝕜 E]
{s : Set E}
{f : E → β}
[IsDirected β fun (x1 x2 : β) => x1 ≤ x2]
(hf : QuasiconvexOn 𝕜 s f)
:
Convex 𝕜 s
theorem
QuasiconcaveOn.convex
{𝕜 : Type u_1}
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[LE β]
[SMul 𝕜 E]
{s : Set E}
{f : E → β}
[IsDirected β fun (x1 x2 : β) => x1 ≥ x2]
(hf : QuasiconcaveOn 𝕜 s f)
:
Convex 𝕜 s
theorem
QuasiconvexOn.sup
{𝕜 : Type u_1}
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[SMul 𝕜 E]
{s : Set E}
{f g : E → β}
[SemilatticeSup β]
(hf : QuasiconvexOn 𝕜 s f)
(hg : QuasiconvexOn 𝕜 s g)
:
QuasiconvexOn 𝕜 s (f ⊔ g)
theorem
QuasiconcaveOn.inf
{𝕜 : Type u_1}
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[SMul 𝕜 E]
{s : Set E}
{f g : E → β}
[SemilatticeInf β]
(hf : QuasiconcaveOn 𝕜 s f)
(hg : QuasiconcaveOn 𝕜 s g)
:
QuasiconcaveOn 𝕜 s (f ⊓ g)
theorem
quasiconvexOn_iff_le_max
{𝕜 : Type u_1}
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[LinearOrder β]
[SMul 𝕜 E]
{s : Set E}
{f : E → β}
:
theorem
quasiconcaveOn_iff_min_le
{𝕜 : Type u_1}
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[LinearOrder β]
[SMul 𝕜 E]
{s : Set E}
{f : E → β}
:
theorem
quasilinearOn_iff_mem_uIcc
{𝕜 : Type u_1}
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[LinearOrder β]
[SMul 𝕜 E]
{s : Set E}
{f : E → β}
:
theorem
QuasiconvexOn.convex_lt
{𝕜 : Type u_1}
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[LinearOrder β]
[SMul 𝕜 E]
{s : Set E}
{f : E → β}
(hf : QuasiconvexOn 𝕜 s f)
(r : β)
:
theorem
QuasiconcaveOn.convex_gt
{𝕜 : Type u_1}
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[LinearOrder β]
[SMul 𝕜 E]
{s : Set E}
{f : E → β}
(hf : QuasiconcaveOn 𝕜 s f)
(r : β)
:
theorem
ConvexOn.quasiconvexOn
{𝕜 : Type u_1}
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[OrderedAddCommMonoid β]
[Module 𝕜 E]
[Module 𝕜 β]
[OrderedSMul 𝕜 β]
{s : Set E}
{f : E → β}
(hf : ConvexOn 𝕜 s f)
:
QuasiconvexOn 𝕜 s f
theorem
ConcaveOn.quasiconcaveOn
{𝕜 : Type u_1}
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[OrderedAddCommMonoid β]
[Module 𝕜 E]
[Module 𝕜 β]
[OrderedSMul 𝕜 β]
{s : Set E}
{f : E → β}
(hf : ConcaveOn 𝕜 s f)
:
QuasiconcaveOn 𝕜 s f
theorem
MonotoneOn.quasiconvexOn
{𝕜 : Type u_1}
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[LinearOrderedAddCommMonoid E]
[OrderedAddCommMonoid β]
[Module 𝕜 E]
[OrderedSMul 𝕜 E]
{s : Set E}
{f : E → β}
(hf : MonotoneOn f s)
(hs : Convex 𝕜 s)
:
QuasiconvexOn 𝕜 s f
theorem
MonotoneOn.quasiconcaveOn
{𝕜 : Type u_1}
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[LinearOrderedAddCommMonoid E]
[OrderedAddCommMonoid β]
[Module 𝕜 E]
[OrderedSMul 𝕜 E]
{s : Set E}
{f : E → β}
(hf : MonotoneOn f s)
(hs : Convex 𝕜 s)
:
QuasiconcaveOn 𝕜 s f
theorem
MonotoneOn.quasilinearOn
{𝕜 : Type u_1}
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[LinearOrderedAddCommMonoid E]
[OrderedAddCommMonoid β]
[Module 𝕜 E]
[OrderedSMul 𝕜 E]
{s : Set E}
{f : E → β}
(hf : MonotoneOn f s)
(hs : Convex 𝕜 s)
:
QuasilinearOn 𝕜 s f
theorem
AntitoneOn.quasiconvexOn
{𝕜 : Type u_1}
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[LinearOrderedAddCommMonoid E]
[OrderedAddCommMonoid β]
[Module 𝕜 E]
[OrderedSMul 𝕜 E]
{s : Set E}
{f : E → β}
(hf : AntitoneOn f s)
(hs : Convex 𝕜 s)
:
QuasiconvexOn 𝕜 s f
theorem
AntitoneOn.quasiconcaveOn
{𝕜 : Type u_1}
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[LinearOrderedAddCommMonoid E]
[OrderedAddCommMonoid β]
[Module 𝕜 E]
[OrderedSMul 𝕜 E]
{s : Set E}
{f : E → β}
(hf : AntitoneOn f s)
(hs : Convex 𝕜 s)
:
QuasiconcaveOn 𝕜 s f
theorem
AntitoneOn.quasilinearOn
{𝕜 : Type u_1}
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[LinearOrderedAddCommMonoid E]
[OrderedAddCommMonoid β]
[Module 𝕜 E]
[OrderedSMul 𝕜 E]
{s : Set E}
{f : E → β}
(hf : AntitoneOn f s)
(hs : Convex 𝕜 s)
:
QuasilinearOn 𝕜 s f
theorem
Monotone.quasiconvexOn
{𝕜 : Type u_1}
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[LinearOrderedAddCommMonoid E]
[OrderedAddCommMonoid β]
[Module 𝕜 E]
[OrderedSMul 𝕜 E]
{f : E → β}
(hf : Monotone f)
:
theorem
Monotone.quasiconcaveOn
{𝕜 : Type u_1}
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[LinearOrderedAddCommMonoid E]
[OrderedAddCommMonoid β]
[Module 𝕜 E]
[OrderedSMul 𝕜 E]
{f : E → β}
(hf : Monotone f)
:
theorem
Monotone.quasilinearOn
{𝕜 : Type u_1}
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[LinearOrderedAddCommMonoid E]
[OrderedAddCommMonoid β]
[Module 𝕜 E]
[OrderedSMul 𝕜 E]
{f : E → β}
(hf : Monotone f)
:
theorem
Antitone.quasiconvexOn
{𝕜 : Type u_1}
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[LinearOrderedAddCommMonoid E]
[OrderedAddCommMonoid β]
[Module 𝕜 E]
[OrderedSMul 𝕜 E]
{f : E → β}
(hf : Antitone f)
:
theorem
Antitone.quasiconcaveOn
{𝕜 : Type u_1}
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[LinearOrderedAddCommMonoid E]
[OrderedAddCommMonoid β]
[Module 𝕜 E]
[OrderedSMul 𝕜 E]
{f : E → β}
(hf : Antitone f)
:
theorem
Antitone.quasilinearOn
{𝕜 : Type u_1}
{E : Type u_2}
{β : Type u_3}
[OrderedSemiring 𝕜]
[LinearOrderedAddCommMonoid E]
[OrderedAddCommMonoid β]
[Module 𝕜 E]
[OrderedSMul 𝕜 E]
{f : E → β}
(hf : Antitone f)
:
theorem
QuasilinearOn.monotoneOn_or_antitoneOn
{𝕜 : Type u_1}
{β : Type u_3}
[LinearOrderedField 𝕜]
{s : Set 𝕜}
{f : 𝕜 → β}
[LinearOrder β]
(hf : QuasilinearOn 𝕜 s f)
:
MonotoneOn f s ∨ AntitoneOn f s
theorem
quasilinearOn_iff_monotoneOn_or_antitoneOn
{𝕜 : Type u_1}
{β : Type u_3}
[LinearOrderedField 𝕜]
{s : Set 𝕜}
{f : 𝕜 → β}
[LinearOrderedAddCommMonoid β]
(hs : Convex 𝕜 s)
:
QuasilinearOn 𝕜 s f ↔ MonotoneOn f s ∨ AntitoneOn f s