Documentation

Mathlib.Analysis.LocallyConvex.Montel

Montel spaces #

A Montel space is a topological vector space E that has the Heine-Borel property: every closed and (von Neumann) bounded set is compact.

Note that we are not requiring that E is a barrelled space, so the usual definition of a Montel space would be [MontelSpace π•œ E] [BarrelledSpace π•œ E].

References #

class MontelSpace (π•œ : Type u_4) (E : Type u_5) [SeminormedRing π•œ] [Zero E] [SMul π•œ E] [TopologicalSpace E] :

A Montel space is a topological vector space that has the Heine-Borel property: every closed and (von Neumann) bounded set is compact.

Note that we are not requiring that E is a barrelled space, so the usual definition of a Montel space would be [MontelSpace π•œ E] [BarrelledSpace π•œ E].

Instances
    theorem MontelSpace.isCompact_of_isClosed_of_isVonNBounded (π•œ : Type u_1) {E : Type u_2} [SeminormedRing π•œ] [Zero E] [SMul π•œ E] [TopologicalSpace E] [hm : MontelSpace π•œ E] {s : Set E} (h_closed : IsClosed s) (h_bounded : Bornology.IsVonNBounded π•œ s) :
    theorem MontelSpace.finiteDimensional_of_normedSpace {π•œ : Type u_1} {E : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup E] [NormedSpace π•œ E] [CompleteSpace π•œ] [hM : MontelSpace π•œ E] :
    def ContinuousLinearEquiv.toCompactConvergenceCLM {π•œβ‚ : Type u_1} {π•œβ‚‚ : Type u_2} [NormedField π•œβ‚] [NormedField π•œβ‚‚] (Οƒ : π•œβ‚ β†’+* π•œβ‚‚) (E : Type u_3) (F : Type u_4) [AddCommGroup E] [Module π•œβ‚ E] [UniformSpace E] [IsUniformAddGroup E] [ContinuousSMul π•œβ‚ E] [AddCommGroup F] [Module π•œβ‚‚ F] [TopologicalSpace F] [IsTopologicalAddGroup F] [ContinuousSMul π•œβ‚‚ F] [T1Space E] [MontelSpace π•œβ‚ E] :
    (E β†’SL[Οƒ] F) ≃L[π•œβ‚‚] CompactConvergenceCLM Οƒ E F

    If E is a Montel space, then the strong topology on E β†’L[π•œ] F coincides with the topology of compact convergence.

    We realize this equality in terms of a continuous linear equivalence between the type synonyms.

    Equations
    Instances For
      @[simp]
      theorem ContinuousLinearEquiv.toCompactConvergenceCLM_apply {π•œβ‚ : Type u_1} {π•œβ‚‚ : Type u_2} [NormedField π•œβ‚] [NormedField π•œβ‚‚] {Οƒ : π•œβ‚ β†’+* π•œβ‚‚} {E : Type u_3} {F : Type u_4} [AddCommGroup E] [Module π•œβ‚ E] [UniformSpace E] [IsUniformAddGroup E] [ContinuousSMul π•œβ‚ E] [AddCommGroup F] [Module π•œβ‚‚ F] [TopologicalSpace F] [IsTopologicalAddGroup F] [ContinuousSMul π•œβ‚‚ F] [T1Space E] [MontelSpace π•œβ‚ E] (f : E β†’SL[Οƒ] F) (x : E) :
      ((toCompactConvergenceCLM Οƒ E F) f) x = f x
      @[simp]
      theorem ContinuousLinearEquiv.toCompactConvergenceCLM_symm_apply {π•œβ‚ : Type u_1} {π•œβ‚‚ : Type u_2} [NormedField π•œβ‚] [NormedField π•œβ‚‚] {Οƒ : π•œβ‚ β†’+* π•œβ‚‚} {E : Type u_3} {F : Type u_4} [AddCommGroup E] [Module π•œβ‚ E] [UniformSpace E] [IsUniformAddGroup E] [ContinuousSMul π•œβ‚ E] [AddCommGroup F] [Module π•œβ‚‚ F] [TopologicalSpace F] [IsTopologicalAddGroup F] [ContinuousSMul π•œβ‚‚ F] [T1Space E] [MontelSpace π•œβ‚ E] (f : CompactConvergenceCLM Οƒ E F) (x : E) :
      ((toCompactConvergenceCLM Οƒ E F).symm f) x = f x