Documentation

Mathlib.Analysis.Meromorphic.Order

Orders of Meromorphic Functions #

This file defines the order of a meromorphic function f at a point zโ‚€, as an element of โ„ค โˆช {โˆž}.

TODO: Uniformize API between analytic and meromorphic functions

Order at a Point: Definition and Characterization #

noncomputable def MeromorphicAt.order {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {f : ๐•œ โ†’ E} {x : ๐•œ} (hf : MeromorphicAt f x) :

The order of a meromorphic function f at zโ‚€, as an element of โ„ค โˆช {โˆž}.

The order is defined to be โˆž if f is identically 0 on a neighbourhood of zโ‚€, and otherwise the unique n such that f can locally be written as f z = (z - zโ‚€) ^ n โ€ข g z, where g is analytic and does not vanish at zโ‚€. See MeromorphicAt.order_eq_top_iff and MeromorphicAt.order_eq_nat_iff for these equivalences.

Equations
Instances For
    theorem MeromorphicAt.order_eq_top_iff {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {f : ๐•œ โ†’ E} {x : ๐•œ} (hf : MeromorphicAt f x) :

    The order of a meromorphic function f at a zโ‚€ is infinity iff f vanishes locally around zโ‚€.

    theorem MeromorphicAt.order_eq_int_iff {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {f : ๐•œ โ†’ E} {x : ๐•œ} {n : โ„ค} (hf : MeromorphicAt f x) :
    hf.order = โ†‘n โ†” โˆƒ (g : ๐•œ โ†’ E), AnalyticAt ๐•œ g x โˆง g x โ‰  0 โˆง โˆ€แถ  (z : ๐•œ) in nhdsWithin x {x}แถœ, f z = (z - x) ^ n โ€ข g z

    The order of a meromorphic function f at zโ‚€ equals an integer n iff f can locally be written as f z = (z - zโ‚€) ^ n โ€ข g z, where g is analytic and does not vanish at zโ‚€.

    theorem MeromorphicAt.order_congr {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {fโ‚ fโ‚‚ : ๐•œ โ†’ E} {x : ๐•œ} (hfโ‚ : MeromorphicAt fโ‚ x) (hfโ‚โ‚‚ : fโ‚ =แถ [nhdsWithin x {x}แถœ] fโ‚‚) :
    hfโ‚.order = โ‹ฏ.order

    Meromorphic functions that agree in a punctured neighborhood of zโ‚€ have the same order at zโ‚€.

    theorem AnalyticAt.meromorphicAt_order {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {f : ๐•œ โ†’ E} {x : ๐•œ} (hf : AnalyticAt ๐•œ f x) :

    Compatibility of notions of order for analytic and meromorphic functions.

    theorem AnalyticAt.meromorphicAt_order_nonneg {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {f : ๐•œ โ†’ E} {x : ๐•œ} (hf : AnalyticAt ๐•œ f x) :
    0 โ‰ค โ‹ฏ.order

    When seen as meromorphic functions, analytic functions have nonnegative order.

    Order at a Point: Behaviour under Ring Operations #

    We establish additivity of the order under multiplication and taking powers.

    theorem MeromorphicAt.order_smul {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {x : ๐•œ} {f : ๐•œ โ†’ ๐•œ} {g : ๐•œ โ†’ E} (hf : MeromorphicAt f x) (hg : MeromorphicAt g x) :
    โ‹ฏ.order = hf.order + hg.order

    The order is additive when multiplying scalar-valued and vector-valued meromorphic functions.

    theorem MeromorphicAt.order_mul {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {x : ๐•œ} {f g : ๐•œ โ†’ ๐•œ} (hf : MeromorphicAt f x) (hg : MeromorphicAt g x) :
    โ‹ฏ.order = hf.order + hg.order

    The order is additive when multiplying meromorphic functions.

    theorem MeromorphicAt.order_inv {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {x : ๐•œ} {f : ๐•œ โ†’ ๐•œ} (hf : MeromorphicAt f x) :
    โ‹ฏ.order = -hf.order

    The order of the inverse is the negative of the order.

    theorem MeromorphicAt.order_add {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {fโ‚ fโ‚‚ : ๐•œ โ†’ E} {x : ๐•œ} (hfโ‚ : MeromorphicAt fโ‚ x) (hfโ‚‚ : MeromorphicAt fโ‚‚ x) :
    hfโ‚.order โŠ“ hfโ‚‚.order โ‰ค โ‹ฏ.order

    The order of a sum is at least the minimum of the orders of the summands.

    theorem MeromorphicAt.order_add_of_order_lt_order {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {fโ‚ fโ‚‚ : ๐•œ โ†’ E} {x : ๐•œ} (hfโ‚ : MeromorphicAt fโ‚ x) (hfโ‚‚ : MeromorphicAt fโ‚‚ x) (h : hfโ‚.order < hfโ‚‚.order) :
    โ‹ฏ.order = hfโ‚.order

    Helper lemma for MeromorphicAt.order_add_of_unequal_order.

    theorem MeromorphicAt.order_add_of_unequal_order {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {fโ‚ fโ‚‚ : ๐•œ โ†’ E} {x : ๐•œ} (hfโ‚ : MeromorphicAt fโ‚ x) (hfโ‚‚ : MeromorphicAt fโ‚‚ x) (h : hfโ‚.order โ‰  hfโ‚‚.order) :
    โ‹ฏ.order = hfโ‚.order โŠ“ hfโ‚‚.order

    If two meromorphic functions have unequal orders, then the order of their sum is exactly the minimum of the orders of the summands.

    Level Sets of the Order Function #

    theorem MeromorphicOn.isClopen_setOf_order_eq_top {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {f : ๐•œ โ†’ E} {U : Set ๐•œ} (hf : MeromorphicOn f U) :
    IsClopen {u : โ†‘U | โ‹ฏ.order = โŠค}

    The set where a meromorphic function has infinite order is clopen in its domain of meromorphy.

    theorem MeromorphicOn.exists_order_ne_top_iff_forall {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {f : ๐•œ โ†’ E} {U : Set ๐•œ} (hf : MeromorphicOn f U) (hU : IsConnected U) :
    (โˆƒ (u : โ†‘U), โ‹ฏ.order โ‰  โŠค) โ†” โˆ€ (u : โ†‘U), โ‹ฏ.order โ‰  โŠค

    On a connected set, there exists a point where a meromorphic function f has finite order iff f has finite order at every point.

    theorem MeromorphicOn.order_ne_top_of_isPreconnected {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {f : ๐•œ โ†’ E} {x : ๐•œ} {U : Set ๐•œ} (hf : MeromorphicOn f U) {y : ๐•œ} (hU : IsPreconnected U) (hโ‚x : x โˆˆ U) (hy : y โˆˆ U) (hโ‚‚x : โ‹ฏ.order โ‰  โŠค) :

    On a preconnected set, a meromorphic function has finite order at one point if it has finite order at another point.

    theorem MeromorphicOn.codiscrete_setOf_order_eq_zero_or_top {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {f : ๐•œ โ†’ E} {U : Set ๐•œ} (hf : MeromorphicOn f U) [CompleteSpace E] :
    {u : โ†‘U | โ‹ฏ.order = 0 โˆจ โ‹ฏ.order = โŠค} โˆˆ Filter.codiscrete โ†‘U

    If the target is a complete space, then the set where a mermorphic function has zero or infinite order is discrete within its domain of meromorphicity.