Documentation

Mathlib.Analysis.Meromorphic.TrailingCoefficient

The Trailing Coefficient of a Meromorphic Function #

This file defines the trailing coefficient of a meromorphic function. If f is meromorphic at a point x, the trailing coefficient is defined as the (unique!) value g x for a presentation of f in the form (z - x) ^ order β€’ g z with g analytic at x.

The lemma meromorphicTrailingCoeffAt_eq_limit expresses the trailing coefficient as a limit.

noncomputable def meromorphicTrailingCoeffAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] (f : π•œ β†’ E) (x : π•œ) :
E

If f is meromorphic of finite order at a point x, the trailing coefficient is defined as the (unique!) value g x for a presentation of f in the form (z - x) ^ order β€’ g z with g analytic at x. In all other cases, the trailing coefficient is defined to be zero.

Equations
Instances For
    @[simp]
    theorem meromorphicTrailingCoeffAt_of_not_MeromorphicAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {f : π•œ β†’ E} {x : π•œ} (h : Β¬MeromorphicAt f x) :

    If f is not meromorphic at x, the trailing coefficient is zero by definition.

    @[simp]
    theorem MeromorphicAt.meromorphicTrailingCoeffAt_of_order_eq_top {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {f : π•œ β†’ E} {x : π•œ} (h : meromorphicOrderAt f x = ⊀) :

    If f is meromorphic of infinite order at x, the trailing coefficient is zero by definition.

    Characterization of the Leading Coefficient #

    theorem AnalyticAt.meromorphicTrailingCoeffAt_of_eq_nhdsNE {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {f g : π•œ β†’ E} {x : π•œ} (h₁g : AnalyticAt π•œ g x) (h : f =αΆ [nhdsWithin x {x}ᢜ] fun (z : π•œ) => (z - x) ^ (meromorphicOrderAt f x).untopβ‚€ β€’ g z) :

    Definition of the trailing coefficient in case where f is meromorphic and a presentation of the form f = (z - x) ^ order β€’ g z is given, with g analytic at x.

    theorem AnalyticAt.meromorphicTrailingCoeffAt_of_ne_zero_of_eq_nhdsNE {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {f g : π•œ β†’ E} {x : π•œ} {n : β„€} (h₁g : AnalyticAt π•œ g x) (hβ‚‚g : g x β‰  0) (h : f =αΆ [nhdsWithin x {x}ᢜ] fun (z : π•œ) => (z - x) ^ n β€’ g z) :

    Variant of meromorphicTrailingCoeffAt_of_order_eq_finite: Definition of the trailing coefficient in case where f is meromorphic of finite order and a presentation is given.

    @[simp]
    theorem AnalyticAt.meromorphicTrailingCoeffAt_of_ne_zero {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {f : π•œ β†’ E} {x : π•œ} (h₁ : AnalyticAt π•œ f x) (hβ‚‚ : f x β‰  0) :

    If f is analytic and does not vanish at x, then the trailing coefficient of f at x is f x.

    theorem MeromorphicAt.tendsto_nhds_meromorphicTrailingCoeffAt {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {f : π•œ β†’ E} {x : π•œ} (h : MeromorphicAt f x) :

    If f is meromorphic at x, then the trailing coefficient of f at x is the limit of the function (Β· - x) ^ (-order) β€’ f.

    Elementary Properties #

    theorem MeromorphicAt.meromorphicTrailingCoeffAt_ne_zero {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {f : π•œ β†’ E} {x : π•œ} (h₁ : MeromorphicAt f x) (hβ‚‚ : meromorphicOrderAt f x β‰  ⊀) :

    If f is meromorphic of finite order at x, then the trailing coefficient is not zero.

    Congruence Lemma #

    theorem meromorphicTrailingCoeffAt_congr_nhdsNE {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {x : π•œ} {f₁ fβ‚‚ : π•œ β†’ E} (h : f₁ =αΆ [nhdsWithin x {x}ᢜ] fβ‚‚) :

    If two functions agree in a punctured neighborhood, then their trailing coefficients agree.

    Behavior under Arithmetic Operations #

    theorem MeromorphicAt.meromorphicTrailingCoeffAt_smul {π•œ : Type u_1} [NontriviallyNormedField π•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace π•œ E] {x : π•œ} {f₁ : π•œ β†’ π•œ} {fβ‚‚ : π•œ β†’ E} (hf₁ : MeromorphicAt f₁ x) (hfβ‚‚ : MeromorphicAt fβ‚‚ x) :

    The trailing coefficient of a scalar product is the scalar product of the trailing coefficients.

    theorem MeromorphicAt.meromorphicTrailingCoeffAt_mul {π•œ : Type u_1} [NontriviallyNormedField π•œ] {x : π•œ} {f₁ fβ‚‚ : π•œ β†’ π•œ} (hf₁ : MeromorphicAt f₁ x) (hfβ‚‚ : MeromorphicAt fβ‚‚ x) :

    The trailing coefficient of a product is the product of the trailing coefficients.

    theorem meromorphicTrailingCoeffAt_inv {π•œ : Type u_1} [NontriviallyNormedField π•œ] {x : π•œ} {f : π•œ β†’ π•œ} :

    The trailing coefficient of the inverse function is the inverse of the trailing coefficient.

    theorem MeromorphicAt.meromorphicTrailingCoeffAt_zpow {π•œ : Type u_1} [NontriviallyNormedField π•œ] {x : π•œ} {n : β„€} {f : π•œ β†’ π•œ} (h₁ : MeromorphicAt f x) :

    The trailing coefficient of the power of a function is the power of the trailing coefficient.

    theorem MeromorphicAt.meromorphicTrailingCoeffAt_pow {π•œ : Type u_1} [NontriviallyNormedField π•œ] {x : π•œ} {n : β„•} {f : π•œ β†’ π•œ} (h₁ : MeromorphicAt f x) :

    The trailing coefficient of the power of a function is the power of the trailing coefficient.