Construction of the hyperreal numbers as an ultraproduct of real sequences. #
Hyperreal numbers on the ultrafilter extending the cofinite filter
Equations
- Hyperreal.«termℝ*» = Lean.ParserDescr.node `Hyperreal.«termℝ*» 1024 (Lean.ParserDescr.symbol "ℝ*")
Instances For
Equations
- Hyperreal.instField = inferInstanceAs (Field ((↑(Filter.hyperfilter ℕ)).Germ ℝ))
Equations
Natural embedding ℝ → ℝ*.
Equations
Instances For
Equations
- Hyperreal.instCoeTCReal = { coe := Hyperreal.ofReal }
The canonical map ℝ → ℝ* as an OrderRingHom.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Basic constants #
Construct a hyperreal number from a sequence of real numbers.
Equations
- Hyperreal.ofSeq f = ↑f
Instances For
ω #
A sample infinite hyperreal ω = ⟦(0, 1, 2, 3, ⋯)⟧.
Conventions for notations in identifiers:
- The recommended spelling of
ωin identifiers isomega.
Equations
Instances For
A sample infinite hyperreal ω = ⟦(0, 1, 2, 3, ⋯)⟧.
Conventions for notations in identifiers:
- The recommended spelling of
ωin identifiers isomega.
Equations
- Hyperreal.termω = Lean.ParserDescr.node `Hyperreal.termω 1024 (Lean.ParserDescr.symbol "ω")
Instances For
ε #
A sample infinitesimal hyperreal ε = ⟦(0, 1, 1/2, 1/3, ⋯)⟧.
Conventions for notations in identifiers:
- The recommended spelling of
εin identifiers isepsilon.
Equations
- Hyperreal.epsilon = Hyperreal.ofSeq fun (n : ℕ) => (↑n)⁻¹
Instances For
A sample infinitesimal hyperreal ε = ⟦(0, 1, 1/2, 1/3, ⋯)⟧.
Conventions for notations in identifiers:
- The recommended spelling of
εin identifiers isepsilon.
Equations
- Hyperreal.termε = Lean.ParserDescr.node `Hyperreal.termε 1024 (Lean.ParserDescr.symbol "ε")
Instances For
Alias of Hyperreal.epsilon_lt_of_pos.
Some facts about standard parts #
Standard part function: like a "round" to ℝ instead of ℤ
Equations
- x.st = if h : ∃ (r : ℝ), x.IsSt r then Classical.choose h else 0
Instances For
A hyperreal number is infinitesimal if its standard part is 0
Equations
- x.Infinitesimal = x.IsSt 0
Instances For
A hyperreal number is positive infinite if it is larger than all real numbers
Equations
- x.InfinitePos = ∀ (r : ℝ), ↑r < x
Instances For
A hyperreal number is negative infinite if it is smaller than all real numbers
Equations
- x.InfiniteNeg = ∀ (r : ℝ), x < ↑r
Instances For
A hyperreal number is infinite if it is infinite positive or infinite negative
Equations
- x.Infinite = (x.InfinitePos ∨ x.InfiniteNeg)