Documentation

Mathlib.Algebra.Order.Hom.Ring

Ordered ring homomorphisms #

Homomorphisms between ordered (semi)rings that respect the ordering.

Main definitions #

Notation #

Implementation notes #

This file used to define typeclasses for order-preserving ring homomorphisms and isomorphisms. In https://github.com/leanprover-community/mathlib4/pull/10544, we migrated from assumptions like [FunLike F R S] [OrderRingHomClass F R S] to assumptions like [FunLike F R S] [OrderHomClass F R S] [RingHomClass F R S], making some typeclasses and instances irrelevant.

Tags #

ordered ring homomorphism, order homomorphism

structure OrderRingHom (α : Type u_6) (β : Type u_7) [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] extends α →+* β :
Type (max u_6 u_7)

OrderRingHom α β is the type of monotone semiring homomorphisms from α to β.

When possible, instead of parametrizing results over (f : OrderRingHom α β), you should parametrize over (F : Type*) [OrderRingHomClass F α β] (f : F).

When you extend this structure, make sure to extend OrderRingHomClass.

  • toFun : αβ
  • map_one' : (↑self.toRingHom).toFun 1 = 1
  • map_mul' (x y : α) : (↑self.toRingHom).toFun (x * y) = (↑self.toRingHom).toFun x * (↑self.toRingHom).toFun y
  • map_zero' : (↑self.toRingHom).toFun 0 = 0
  • map_add' (x y : α) : (↑self.toRingHom).toFun (x + y) = (↑self.toRingHom).toFun x + (↑self.toRingHom).toFun y
  • monotone' : Monotone (↑self.toRingHom).toFun

    The proposition that the function preserves the order.

Instances For

    OrderRingHom α β is the type of monotone semiring homomorphisms from α to β.

    When possible, instead of parametrizing results over (f : OrderRingHom α β), you should parametrize over (F : Type*) [OrderRingHomClass F α β] (f : F).

    When you extend this structure, make sure to extend OrderRingHomClass.

    Equations
    Instances For
      structure OrderRingIso (α : Type u_6) (β : Type u_7) [Mul α] [Mul β] [Add α] [Add β] [LE α] [LE β] extends α ≃+* β :
      Type (max u_6 u_7)

      OrderRingHom α β is the type of order-preserving semiring isomorphisms between α and β.

      When possible, instead of parametrizing results over (f : OrderRingIso α β), you should parametrize over (F : Type*) [OrderRingIsoClass F α β] (f : F).

      When you extend this structure, make sure to extend OrderRingIsoClass.

      Instances For

        OrderRingHom α β is the type of order-preserving semiring isomorphisms between α and β.

        When possible, instead of parametrizing results over (f : OrderRingIso α β), you should parametrize over (F : Type*) [OrderRingIsoClass F α β] (f : F).

        When you extend this structure, make sure to extend OrderRingIsoClass.

        Equations
        Instances For
          def OrderRingHomClass.toOrderRingHom {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] [OrderHomClass F α β] [RingHomClass F α β] (f : F) :
          α →+*o β

          Turn an element of a type F satisfying OrderHomClass F α β and RingHomClass F α β into an actual OrderRingHom. This is declared as the default coercion from F to α →+*o β.

          Equations
          • f = { toRingHom := f, monotone' := }
          Instances For
            instance instCoeTCOrderRingHomOfOrderHomClassOfRingHomClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [FunLike F α β] [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] [OrderHomClass F α β] [RingHomClass F α β] :
            CoeTC F (α →+*o β)

            Any type satisfying OrderRingHomClass can be cast into OrderRingHom via OrderRingHomClass.toOrderRingHom.

            Equations
            • instCoeTCOrderRingHomOfOrderHomClassOfRingHomClass = { coe := OrderRingHomClass.toOrderRingHom }
            def OrderRingIsoClass.toOrderRingIso {F : Type u_1} {α : Type u_2} {β : Type u_3} [EquivLike F α β] [Mul α] [Add α] [LE α] [Mul β] [Add β] [LE β] [OrderIsoClass F α β] [RingEquivClass F α β] (f : F) :
            α ≃+*o β

            Turn an element of a type F satisfying OrderIsoClass F α β and RingEquivClass F α β into an actual OrderRingIso. This is declared as the default coercion from F to α ≃+*o β.

            Equations
            • f = { toRingEquiv := f, map_le_map_iff' := }
            Instances For
              instance instCoeTCOrderRingIsoOfOrderIsoClassOfRingEquivClass {F : Type u_1} {α : Type u_2} {β : Type u_3} [EquivLike F α β] [Mul α] [Add α] [LE α] [Mul β] [Add β] [LE β] [OrderIsoClass F α β] [RingEquivClass F α β] :
              CoeTC F (α ≃+*o β)

              Any type satisfying OrderRingIsoClass can be cast into OrderRingIso via OrderRingIsoClass.toOrderRingIso.

              Equations
              • instCoeTCOrderRingIsoOfOrderIsoClassOfRingEquivClass = { coe := OrderRingIsoClass.toOrderRingIso }

              Ordered ring homomorphisms #

              def OrderRingHom.toOrderAddMonoidHom {α : Type u_2} {β : Type u_3} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] (f : α →+*o β) :
              α →+o β

              Reinterpret an ordered ring homomorphism as an ordered additive monoid homomorphism.

              Equations
              • f.toOrderAddMonoidHom = { toFun := (↑f.toRingHom).toFun, map_zero' := , map_add' := , monotone' := }
              Instances For
                def OrderRingHom.toOrderMonoidWithZeroHom {α : Type u_2} {β : Type u_3} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] (f : α →+*o β) :
                α →*₀o β

                Reinterpret an ordered ring homomorphism as an order homomorphism.

                Equations
                • f.toOrderMonoidWithZeroHom = { toFun := (↑f.toRingHom).toFun, map_zero' := , map_one' := , map_mul' := , monotone' := }
                Instances For
                  instance OrderRingHom.instFunLike {α : Type u_2} {β : Type u_3} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] :
                  FunLike (α →+*o β) α β
                  Equations
                  • OrderRingHom.instFunLike = { coe := fun (f : α →+*o β) => (↑f.toRingHom).toFun, coe_injective' := }
                  instance OrderRingHom.instOrderHomClass {α : Type u_2} {β : Type u_3} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] :
                  OrderHomClass (α →+*o β) α β
                  instance OrderRingHom.instRingHomClass {α : Type u_2} {β : Type u_3} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] :
                  RingHomClass (α →+*o β) α β
                  theorem OrderRingHom.toFun_eq_coe {α : Type u_2} {β : Type u_3} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] (f : α →+*o β) :
                  (↑f.toRingHom).toFun = f
                  theorem OrderRingHom.ext {α : Type u_2} {β : Type u_3} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] {f g : α →+*o β} (h : ∀ (a : α), f a = g a) :
                  f = g
                  @[simp]
                  theorem OrderRingHom.toRingHom_eq_coe {α : Type u_2} {β : Type u_3} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] (f : α →+*o β) :
                  f.toRingHom = f
                  @[simp]
                  theorem OrderRingHom.toOrderAddMonoidHom_eq_coe {α : Type u_2} {β : Type u_3} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] (f : α →+*o β) :
                  f.toOrderAddMonoidHom = f
                  @[simp]
                  theorem OrderRingHom.toOrderMonoidWithZeroHom_eq_coe {α : Type u_2} {β : Type u_3} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] (f : α →+*o β) :
                  f.toOrderMonoidWithZeroHom = f
                  @[simp]
                  theorem OrderRingHom.coe_coe_ringHom {α : Type u_2} {β : Type u_3} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] (f : α →+*o β) :
                  f = f
                  @[simp]
                  theorem OrderRingHom.coe_coe_orderAddMonoidHom {α : Type u_2} {β : Type u_3} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] (f : α →+*o β) :
                  f = f
                  @[simp]
                  theorem OrderRingHom.coe_coe_orderMonoidWithZeroHom {α : Type u_2} {β : Type u_3} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] (f : α →+*o β) :
                  f = f
                  theorem OrderRingHom.coe_ringHom_apply {α : Type u_2} {β : Type u_3} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] (f : α →+*o β) (a : α) :
                  f a = f a
                  theorem OrderRingHom.coe_orderAddMonoidHom_apply {α : Type u_2} {β : Type u_3} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] (f : α →+*o β) (a : α) :
                  f a = f a
                  theorem OrderRingHom.coe_orderMonoidWithZeroHom_apply {α : Type u_2} {β : Type u_3} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] (f : α →+*o β) (a : α) :
                  f a = f a
                  def OrderRingHom.copy {α : Type u_2} {β : Type u_3} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] (f : α →+*o β) (f' : αβ) (h : f' = f) :
                  α →+*o β

                  Copy of an OrderRingHom with a new toFun equal to the old one. Useful to fix definitional equalities.

                  Equations
                  • f.copy f' h = { toRingHom := f.copy f' h, monotone' := }
                  Instances For
                    @[simp]
                    theorem OrderRingHom.coe_copy {α : Type u_2} {β : Type u_3} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] (f : α →+*o β) (f' : αβ) (h : f' = f) :
                    (f.copy f' h) = f'
                    theorem OrderRingHom.copy_eq {α : Type u_2} {β : Type u_3} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] (f : α →+*o β) (f' : αβ) (h : f' = f) :
                    f.copy f' h = f
                    def OrderRingHom.id (α : Type u_2) [NonAssocSemiring α] [Preorder α] :
                    α →+*o α

                    The identity as an ordered ring homomorphism.

                    Equations
                    Instances For
                      @[simp]
                      theorem OrderRingHom.coe_id (α : Type u_2) [NonAssocSemiring α] [Preorder α] :
                      (OrderRingHom.id α) = id
                      @[simp]
                      theorem OrderRingHom.id_apply {α : Type u_2} [NonAssocSemiring α] [Preorder α] (a : α) :
                      def OrderRingHom.comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] [NonAssocSemiring γ] [Preorder γ] (f : β →+*o γ) (g : α →+*o β) :
                      α →+*o γ

                      Composition of two OrderRingHoms as an OrderRingHom.

                      Equations
                      • f.comp g = { toRingHom := f.comp g.toRingHom, monotone' := }
                      Instances For
                        @[simp]
                        theorem OrderRingHom.coe_comp {α : Type u_2} {β : Type u_3} {γ : Type u_4} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] [NonAssocSemiring γ] [Preorder γ] (f : β →+*o γ) (g : α →+*o β) :
                        (f.comp g) = f g
                        @[simp]
                        theorem OrderRingHom.comp_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] [NonAssocSemiring γ] [Preorder γ] (f : β →+*o γ) (g : α →+*o β) (a : α) :
                        (f.comp g) a = f (g a)
                        theorem OrderRingHom.comp_assoc {α : Type u_2} {β : Type u_3} {γ : Type u_4} {δ : Type u_5} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] [NonAssocSemiring γ] [Preorder γ] [NonAssocSemiring δ] [Preorder δ] (f : γ →+*o δ) (g : β →+*o γ) (h : α →+*o β) :
                        (f.comp g).comp h = f.comp (g.comp h)
                        @[simp]
                        theorem OrderRingHom.comp_id {α : Type u_2} {β : Type u_3} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] (f : α →+*o β) :
                        f.comp (OrderRingHom.id α) = f
                        @[simp]
                        theorem OrderRingHom.id_comp {α : Type u_2} {β : Type u_3} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] (f : α →+*o β) :
                        (OrderRingHom.id β).comp f = f
                        @[simp]
                        theorem OrderRingHom.cancel_right {α : Type u_2} {β : Type u_3} {γ : Type u_4} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] [NonAssocSemiring γ] [Preorder γ] {f₁ f₂ : β →+*o γ} {g : α →+*o β} (hg : Function.Surjective g) :
                        f₁.comp g = f₂.comp g f₁ = f₂
                        @[simp]
                        theorem OrderRingHom.cancel_left {α : Type u_2} {β : Type u_3} {γ : Type u_4} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] [NonAssocSemiring γ] [Preorder γ] {f : β →+*o γ} {g₁ g₂ : α →+*o β} (hf : Function.Injective f) :
                        f.comp g₁ = f.comp g₂ g₁ = g₂
                        instance OrderRingHom.instPreorder {α : Type u_2} {β : Type u_3} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] :
                        Equations
                        Equations

                        Ordered ring isomorphisms #

                        def OrderRingIso.toOrderIso {α : Type u_2} {β : Type u_3} [Mul α] [Add α] [LE α] [Mul β] [Add β] [LE β] (f : α ≃+*o β) :
                        α ≃o β

                        Reinterpret an ordered ring isomorphism as an order isomorphism.

                        Equations
                        • f = { toEquiv := f.toEquiv, map_rel_iff' := }
                        Instances For
                          instance OrderRingIso.instEquivLike {α : Type u_2} {β : Type u_3} [Mul α] [Add α] [LE α] [Mul β] [Add β] [LE β] :
                          EquivLike (α ≃+*o β) α β
                          Equations
                          • OrderRingIso.instEquivLike = { coe := fun (f : α ≃+*o β) => f.toFun, inv := fun (f : α ≃+*o β) => f.invFun, left_inv := , right_inv := , coe_injective' := }
                          instance OrderRingIso.instOrderIsoClass {α : Type u_2} {β : Type u_3} [Mul α] [Add α] [LE α] [Mul β] [Add β] [LE β] :
                          OrderIsoClass (α ≃+*o β) α β
                          instance OrderRingIso.instRingEquivClass {α : Type u_2} {β : Type u_3} [Mul α] [Add α] [LE α] [Mul β] [Add β] [LE β] :
                          RingEquivClass (α ≃+*o β) α β
                          theorem OrderRingIso.toFun_eq_coe {α : Type u_2} {β : Type u_3} [Mul α] [Add α] [LE α] [Mul β] [Add β] [LE β] (f : α ≃+*o β) :
                          f.toFun = f
                          theorem OrderRingIso.ext {α : Type u_2} {β : Type u_3} [Mul α] [Add α] [LE α] [Mul β] [Add β] [LE β] {f g : α ≃+*o β} (h : ∀ (a : α), f a = g a) :
                          f = g
                          @[simp]
                          theorem OrderRingIso.coe_mk {α : Type u_2} {β : Type u_3} [Mul α] [Add α] [LE α] [Mul β] [Add β] [LE β] (e : α ≃+* β) (h : ∀ {a b : α}, e.toFun a e.toFun b a b) :
                          { toRingEquiv := e, map_le_map_iff' := h } = e
                          @[simp]
                          theorem OrderRingIso.mk_coe {α : Type u_2} {β : Type u_3} [Mul α] [Add α] [LE α] [Mul β] [Add β] [LE β] (e : α ≃+*o β) (h : ∀ {a b : α}, (↑e).toFun a (↑e).toFun b a b) :
                          { toRingEquiv := e, map_le_map_iff' := h } = e
                          @[simp]
                          theorem OrderRingIso.toRingEquiv_eq_coe {α : Type u_2} {β : Type u_3} [Mul α] [Add α] [LE α] [Mul β] [Add β] [LE β] (f : α ≃+*o β) :
                          f.toRingEquiv = f
                          @[simp]
                          theorem OrderRingIso.toOrderIso_eq_coe {α : Type u_2} {β : Type u_3} [Mul α] [Add α] [LE α] [Mul β] [Add β] [LE β] (f : α ≃+*o β) :
                          f = f
                          @[simp]
                          theorem OrderRingIso.coe_toRingEquiv {α : Type u_2} {β : Type u_3} [Mul α] [Add α] [LE α] [Mul β] [Add β] [LE β] (f : α ≃+*o β) :
                          f = f
                          @[simp]
                          theorem OrderRingIso.coe_toOrderIso {α : Type u_2} {β : Type u_3} [Mul α] [Add α] [LE α] [Mul β] [Add β] [LE β] (f : α ≃+*o β) :
                          f = f
                          def OrderRingIso.refl (α : Type u_2) [Mul α] [Add α] [LE α] :
                          α ≃+*o α

                          The identity map as an ordered ring isomorphism.

                          Equations
                          Instances For
                            instance OrderRingIso.instInhabited (α : Type u_2) [Mul α] [Add α] [LE α] :
                            Equations
                            @[simp]
                            theorem OrderRingIso.refl_apply (α : Type u_2) [Mul α] [Add α] [LE α] (x : α) :
                            @[simp]
                            theorem OrderRingIso.coe_ringEquiv_refl (α : Type u_2) [Mul α] [Add α] [LE α] :
                            @[simp]
                            theorem OrderRingIso.coe_orderIso_refl (α : Type u_2) [Mul α] [Add α] [LE α] :
                            def OrderRingIso.symm {α : Type u_2} {β : Type u_3} [Mul α] [Add α] [LE α] [Mul β] [Add β] [LE β] (e : α ≃+*o β) :
                            β ≃+*o α

                            The inverse of an ordered ring isomorphism as an ordered ring isomorphism.

                            Equations
                            • e.symm = { toRingEquiv := e.symm, map_le_map_iff' := }
                            Instances For
                              def OrderRingIso.Simps.symm_apply {α : Type u_2} {β : Type u_3} [Mul α] [Add α] [LE α] [Mul β] [Add β] [LE β] (e : α ≃+*o β) :
                              βα

                              See Note [custom simps projection]

                              Equations
                              Instances For
                                @[simp]
                                theorem OrderRingIso.symm_symm {α : Type u_2} {β : Type u_3} [Mul α] [Add α] [LE α] [Mul β] [Add β] [LE β] (e : α ≃+*o β) :
                                e.symm.symm = e
                                def OrderRingIso.trans {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Mul α] [Add α] [LE α] [Mul β] [Add β] [LE β] [Mul γ] [Add γ] [LE γ] (f : α ≃+*o β) (g : β ≃+*o γ) :
                                α ≃+*o γ

                                Composition of OrderRingIsos as an OrderRingIso.

                                Equations
                                • f.trans g = { toRingEquiv := f.trans g.toRingEquiv, map_le_map_iff' := }
                                Instances For
                                  theorem OrderRingIso.trans_toRingEquiv {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Mul α] [Add α] [LE α] [Mul β] [Add β] [LE β] [Mul γ] [Add γ] [LE γ] (f : α ≃+*o β) (g : β ≃+*o γ) :
                                  (f.trans g).toRingEquiv = f.trans g.toRingEquiv
                                  @[simp]
                                  theorem OrderRingIso.trans_toRingEquiv_aux {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Mul α] [Add α] [LE α] [Mul β] [Add β] [LE β] [Mul γ] [Add γ] [LE γ] (f : α ≃+*o β) (g : β ≃+*o γ) :
                                  (f.trans g) = f.trans g.toRingEquiv
                                  @[simp]
                                  theorem OrderRingIso.trans_apply {α : Type u_2} {β : Type u_3} {γ : Type u_4} [Mul α] [Add α] [LE α] [Mul β] [Add β] [LE β] [Mul γ] [Add γ] [LE γ] (f : α ≃+*o β) (g : β ≃+*o γ) (a : α) :
                                  (f.trans g) a = g (f a)
                                  @[simp]
                                  theorem OrderRingIso.self_trans_symm {α : Type u_2} {β : Type u_3} [Mul α] [Add α] [LE α] [Mul β] [Add β] [LE β] (e : α ≃+*o β) :
                                  e.trans e.symm = OrderRingIso.refl α
                                  @[simp]
                                  theorem OrderRingIso.symm_trans_self {α : Type u_2} {β : Type u_3} [Mul α] [Add α] [LE α] [Mul β] [Add β] [LE β] (e : α ≃+*o β) :
                                  e.symm.trans e = OrderRingIso.refl β
                                  theorem OrderRingIso.symm_bijective {α : Type u_2} {β : Type u_3} [Mul α] [Add α] [LE α] [Mul β] [Add β] [LE β] :
                                  Function.Bijective OrderRingIso.symm
                                  def OrderRingIso.toOrderRingHom {α : Type u_2} {β : Type u_3} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] (f : α ≃+*o β) :
                                  α →+*o β

                                  Reinterpret an ordered ring isomorphism as an ordered ring homomorphism.

                                  Equations
                                  • f.toOrderRingHom = { toRingHom := f.toRingHom, monotone' := }
                                  Instances For
                                    @[simp]
                                    theorem OrderRingIso.toOrderRingHom_eq_coe {α : Type u_2} {β : Type u_3} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] (f : α ≃+*o β) :
                                    f.toOrderRingHom = f
                                    @[simp]
                                    theorem OrderRingIso.coe_toOrderRingHom {α : Type u_2} {β : Type u_3} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] (f : α ≃+*o β) :
                                    f = f
                                    theorem OrderRingIso.toOrderRingHom_injective {α : Type u_2} {β : Type u_3} [NonAssocSemiring α] [Preorder α] [NonAssocSemiring β] [Preorder β] :
                                    Function.Injective OrderRingIso.toOrderRingHom