Documentation

Mathlib.Analysis.SpecialFunctions.Arcosh

Inverse of the cosh function #

In this file we define an inverse of cosh as a function from [0, ∞) to [1, ∞).

Main definitions #

Main Results #

Tags #

arcosh, arccosh, argcosh, acosh

def Real.arcosh (x : ) :

arcosh is defined using a logarithm, arcosh x = log (x + √(x ^ 2 - 1)).

Equations
Instances For
    theorem Real.exp_arcosh {x : } (hx : 1 x) :
    exp (arcosh x) = x + (x ^ 2 - 1)
    @[simp]
    theorem Real.add_sqrt_self_sq_sub_one_inv {x : } (hx : 1 x) :
    (x + (x ^ 2 - 1))⁻¹ = x - (x ^ 2 - 1)
    theorem Real.cosh_arcosh {x : } (hx : 1 x) :
    cosh (arcosh x) = x

    arcosh is the right inverse of cosh over [1, ∞).

    theorem Real.arcosh_eq_zero_iff {x : } (hx : 1 x) :
    arcosh x = 0 x = 1
    theorem Real.sinh_arcosh {x : } (hx : 1 x) :
    sinh (arcosh x) = (x ^ 2 - 1)
    theorem Real.tanh_arcosh {x : } (hx : 1 x) :
    tanh (arcosh x) = (x ^ 2 - 1) / x
    theorem Real.arcosh_cosh {x : } (hx : 0 x) :
    arcosh (cosh x) = x

    arcosh is the left inverse of cosh over [0, ∞).

    theorem Real.arcosh_nonneg {x : } (hx : 1 x) :
    theorem Real.arcosh_pos {x : } (hx : 1 < x) :
    0 < arcosh x

    This holds for Ioi 0 instead of only Ici 1 due to junk values.

    theorem Real.arcosh_le_arcosh {x y : } (hx : 0 < x) (hy : 0 < y) :

    This holds for 0 < x, y ≤ 1 due to junk values.

    theorem Real.arcosh_lt_arcosh {x y : } (hx : 0 < x) (hy : 0 < y) :
    arcosh x < arcosh y x < y

    This holds for 0 < x, y ≤ 1 due to junk values.

    Real.cosh as a PartialEquiv.

    Equations
    Instances For