Documentation

Mathlib.Analysis.SpecialFunctions.Complex.Circle

Maps on the unit circle #

In this file we prove some basic lemmas about expMapCircle and the restriction of Complex.arg to the unit circle. These two maps define a partial equivalence between circle and , see circle.argPartialEquiv and circle.argEquiv, that sends the whole circle to (-π, π].

theorem Circle.injective_arg :
Function.Injective fun (z : Circle) => (↑z).arg
@[simp]
theorem Circle.arg_eq_arg {z : Circle} {w : Circle} :
(↑z).arg = (↑w).arg z = w
theorem Circle.arg_exp {x : } (h₁ : -Real.pi < x) (h₂ : x Real.pi) :
(↑(Circle.exp x)).arg = x
@[simp]
theorem Circle.exp_arg (z : Circle) :
Circle.exp (↑z).arg = z
@[deprecated Circle.arg_exp]
theorem arg_expMapCircle {x : } (h₁ : -Real.pi < x) (h₂ : x Real.pi) :
(↑(Circle.exp x)).arg = x

Alias of Circle.arg_exp.

@[deprecated Circle.exp_arg]
theorem expMapCircle_arg (z : Circle) :
Circle.exp (↑z).arg = z

Alias of Circle.exp_arg.

Complex.arg ∘ (↑) and expMapCircle define a partial equivalence between circle and with source = Set.univ and target = Set.Ioc (-π) π.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem Circle.argEquiv_apply_coe (z : Circle) :
    (Circle.argEquiv z) = (↑z).arg
    @[simp]
    noncomputable def Circle.argEquiv :

    Complex.arg and expMapCircle define an equivalence between circle and (-π, π].

    Equations
    Instances For
      theorem Circle.exp_eq_exp {x : } {y : } :
      Circle.exp x = Circle.exp y ∃ (m : ), x = y + m * (2 * Real.pi)
      @[simp]
      theorem Circle.exp_two_pi :
      Circle.exp (2 * Real.pi) = 1
      theorem Circle.exp_int_mul_two_pi (n : ) :
      Circle.exp (n * (2 * Real.pi)) = 1
      theorem Circle.exp_two_pi_mul_int (n : ) :
      Circle.exp (2 * Real.pi * n) = 1
      theorem Circle.exp_eq_one {r : } :
      Circle.exp r = 1 ∃ (n : ), r = n * (2 * Real.pi)
      theorem Circle.exp_sub_two_pi (x : ) :
      Circle.exp (x - 2 * Real.pi) = Circle.exp x
      theorem Circle.exp_add_two_pi (x : ) :
      Circle.exp (x + 2 * Real.pi) = Circle.exp x
      @[deprecated Circle.leftInverse_exp_arg]

      Alias of Circle.leftInverse_exp_arg.

      @[deprecated Circle.surjOn_exp_neg_pi_pi]

      Alias of Circle.surjOn_exp_neg_pi_pi.

      @[deprecated Circle.invOn_arg_exp]

      Alias of Circle.invOn_arg_exp.

      @[deprecated Circle.exp_eq_exp]
      theorem expMapCircle_eq_expMapCircle {x : } {y : } :
      Circle.exp x = Circle.exp y ∃ (m : ), x = y + m * (2 * Real.pi)

      Alias of Circle.exp_eq_exp.

      @[deprecated Circle.periodic_exp]

      Alias of Circle.periodic_exp.

      @[deprecated Circle.exp_two_pi]
      theorem expMapCircle_two_pi :
      Circle.exp (2 * Real.pi) = 1

      Alias of Circle.exp_two_pi.

      @[deprecated Circle.exp_sub_two_pi]
      theorem expMapCircle_sub_two_pi (x : ) :
      Circle.exp (x - 2 * Real.pi) = Circle.exp x

      Alias of Circle.exp_sub_two_pi.

      @[deprecated Circle.exp_add_two_pi]
      theorem expMapCircle_add_two_pi (x : ) :
      Circle.exp (x + 2 * Real.pi) = Circle.exp x

      Alias of Circle.exp_add_two_pi.

      noncomputable def Real.Angle.toCircle (θ : Real.Angle) :

      Circle.exp, applied to a Real.Angle.

      Equations
      Instances For
        @[simp]
        theorem Real.Angle.toCircle_coe (x : ) :
        (↑x).toCircle = Circle.exp x
        theorem Real.Angle.coe_toCircle (θ : Real.Angle) :
        θ.toCircle = θ.cos + θ.sin * Complex.I
        @[simp]
        theorem Real.Angle.toCircle_neg (θ : Real.Angle) :
        (-θ).toCircle = θ.toCircle⁻¹
        @[simp]
        theorem Real.Angle.toCircle_add (θ₁ : Real.Angle) (θ₂ : Real.Angle) :
        (θ₁ + θ₂).toCircle = θ₁.toCircle * θ₂.toCircle
        @[simp]
        theorem Real.Angle.arg_toCircle (θ : Real.Angle) :
        (↑θ.toCircle).arg = θ
        @[deprecated Real.Angle.toCircle]

        Alias of Real.Angle.toCircle.


        Circle.exp, applied to a Real.Angle.

        Equations
        Instances For
          @[deprecated Real.Angle.toCircle_coe]
          theorem Real.Angle.expMapCircle_coe (x : ) :
          (↑x).toCircle = Circle.exp x

          Alias of Real.Angle.toCircle_coe.

          @[deprecated Real.Angle.coe_toCircle]
          theorem Real.Angle.coe_expMapCircle (θ : Real.Angle) :
          θ.toCircle = θ.cos + θ.sin * Complex.I

          Alias of Real.Angle.coe_toCircle.

          @[deprecated Real.Angle.toCircle_zero]

          Alias of Real.Angle.toCircle_zero.

          @[deprecated Real.Angle.toCircle_neg]
          theorem Real.Angle.expMapCircle_neg (θ : Real.Angle) :
          (-θ).toCircle = θ.toCircle⁻¹

          Alias of Real.Angle.toCircle_neg.

          @[deprecated Real.Angle.toCircle_add]
          theorem Real.Angle.expMapCircle_add (θ₁ : Real.Angle) (θ₂ : Real.Angle) :
          (θ₁ + θ₂).toCircle = θ₁.toCircle * θ₂.toCircle

          Alias of Real.Angle.toCircle_add.

          @[deprecated Real.Angle.arg_toCircle]
          theorem Real.Angle.arg_expMapCircle (θ : Real.Angle) :
          (↑θ.toCircle).arg = θ

          Alias of Real.Angle.arg_toCircle.

          Map from AddCircle to Circle #

          theorem AddCircle.scaled_exp_map_periodic {T : } :
          Function.Periodic (fun (x : ) => Circle.exp (2 * Real.pi / T * x)) T
          noncomputable def AddCircle.toCircle {T : } :

          The canonical map fun x => exp (2 π i x / T) from ℝ / ℤ • T to the unit circle in . If T = 0 we understand this as the constant function 1.

          Equations
          • AddCircle.toCircle = .lift
          Instances For
            theorem AddCircle.toCircle_apply_mk {T : } (x : ) :
            AddCircle.toCircle x = Circle.exp (2 * Real.pi / T * x)
            theorem AddCircle.toCircle_add {T : } (x : AddCircle T) (y : AddCircle T) :
            (x + y).toCircle = x.toCircle * y.toCircle
            theorem AddCircle.continuous_toCircle {T : } :
            Continuous AddCircle.toCircle
            theorem AddCircle.injective_toCircle {T : } (hT : T 0) :
            Function.Injective AddCircle.toCircle
            @[simp]
            theorem AddCircle.homeomorphCircle'_apply (θ : Real.Angle) :
            AddCircle.homeomorphCircle' θ = θ.toCircle

            The homeomorphism between AddCircle (2 * π) and Circle.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem AddCircle.homeomorphCircle'_apply_mk (x : ) :
              AddCircle.homeomorphCircle' x = Circle.exp x
              theorem AddCircle.homeomorphCircle_apply {T : } (hT : T 0) (x : AddCircle T) :
              (AddCircle.homeomorphCircle hT) x = x.toCircle
              @[deprecated isLocalHomeomorph_circleExp]

              Alias of isLocalHomeomorph_circleExp.