Documentation

Mathlib.Analysis.SpecialFunctions.Complex.CircleAddChar

Additive characters valued in the unit circle #

This file defines additive characters, valued in the unit circle, from either

These results are separate from Analysis.SpecialFunctions.Complex.Circle in order to reduce the imports of that file.

The canonical map from the additive to the multiplicative circle, as an AddChar.

Equations
Instances For

    Additive characters valued in the complex circle #

    noncomputable def ZMod.toCircle {N : } [NeZero N] :

    The additive character from ZMod N to the unit circle in , sending j mod N to exp (2 * π * I * j / N).

    Equations
    Instances For
      theorem ZMod.toCircle_intCast {N : } [NeZero N] (j : ) :
      (toCircle j) = Complex.exp (2 * Real.pi * Complex.I * j / N)
      theorem ZMod.toCircle_natCast {N : } [NeZero N] (j : ) :
      (toCircle j) = Complex.exp (2 * Real.pi * Complex.I * j / N)
      theorem ZMod.toCircle_apply {N : } [NeZero N] (j : ZMod N) :
      (toCircle j) = Complex.exp (2 * Real.pi * Complex.I * j.val / N)

      Explicit formula for toCircle j. Note that this is "evil" because it uses ZMod.val. Where possible, it is recommended to lift j to and use toCircle_intCast instead.

      noncomputable def ZMod.stdAddChar {N : } [NeZero N] :

      The additive character from ZMod N to , sending j mod N to exp (2 * π * I * j / N).

      Equations
      Instances For
        theorem ZMod.stdAddChar_coe {N : } [NeZero N] (j : ) :
        stdAddChar j = Complex.exp (2 * Real.pi * Complex.I * j / N)
        theorem ZMod.stdAddChar_apply {N : } [NeZero N] (j : ZMod N) :
        stdAddChar j = (toCircle j)
        theorem ZMod.isPrimitive_stdAddChar (N : ) [NeZero N] :
        stdAddChar.IsPrimitive

        The standard additive character ZMod N → ℂ is primitive.