Cotangent #
This file contains lemmas about the cotangent function, including useful series expansions.
In particular, we prove that
π * cot (π * z) = π * I - 2 * π * I * ∑' n : ℕ, Complex.exp (2 * π * I * z) ^ n
as well as the infinite sum representation of cotangent (also known as the Mittag-Leffler
expansion): π * cot (π * z) = 1 / z + ∑' n : ℕ+, (1 / ((z : ℂ) - n) + 1 / (z + n))
.
theorem
tendsto_euler_sin_prod'
{x : ℂ}
(h0 : x ≠ 0)
:
Filter.Tendsto (fun (n : ℕ) => ∏ i ∈ Finset.range n, (1 + sineTerm x i)) Filter.atTop
(nhds (Complex.sin (↑Real.pi * x) / (↑Real.pi * x)))
theorem
HasProdLocallyUniformlyOn_euler_sin_prod :
HasProdLocallyUniformlyOn (fun (n : ℕ) (z : ℂ) => 1 + sineTerm z n)
(fun (x : ℂ) => Complex.sin (↑Real.pi * x) / (↑Real.pi * x)) Complex.integerComplement
theorem
tendsto_logDeriv_euler_sin_div
{x : ℂ}
(hx : x ∈ Complex.integerComplement)
:
Filter.Tendsto (fun (n : ℕ) => logDeriv (fun (z : ℂ) => ∏ j ∈ Finset.range n, (1 + sineTerm z j)) x) Filter.atTop
(nhds (logDeriv (fun (t : ℂ) => Complex.sin (↑Real.pi * t) / (↑Real.pi * t)) x))
theorem
logDeriv_prod_sineTerm_eq_sum_cotTerm
{x : ℂ}
(hx : x ∈ Complex.integerComplement)
(n : ℕ)
:
logDeriv (fun (z : ℂ) => ∏ j ∈ Finset.range n, (1 + sineTerm z j)) x = ∑ j ∈ Finset.range n, cotTerm x j
theorem
tendsto_logDeriv_euler_cot_sub
{x : ℂ}
(hx : x ∈ Complex.integerComplement)
:
Filter.Tendsto (fun (n : ℕ) => ∑ j ∈ Finset.range n, cotTerm x j) Filter.atTop
(nhds (↑Real.pi * (↑Real.pi * x).cot - 1 / x))