Documentation

Mathlib.Analysis.SpecialFunctions.Trigonometric.Cotangent

Cotangent #

This file contains lemmas about the cotangent function, including useful series expansions. In particular, we prove that π * cot (π * z) = π * I - 2 * π * I * ∑' n : ℕ, Complex.exp (2 * π * I * z) ^ n as well as the infinite sum representation of cotangent (also known as the Mittag-Leffler expansion): π * cot (π * z) = 1 / z + ∑' n : ℕ+, (1 / ((z : ℂ) - n) + 1 / (z + n)).

theorem Complex.cot_eq_exp_ratio (z : ) :
z.cot = (exp (2 * I * z) + 1) / (I * (1 - exp (2 * I * z)))
theorem Complex.cot_pi_eq_exp_ratio (z : ) :
(Real.pi * z).cot = (exp (2 * Real.pi * I * z) + 1) / (I * (1 - exp (2 * Real.pi * I * z)))
@[reducible, inline]
noncomputable abbrev sineTerm (x : ) (n : ) :

The main term in the infinite product for sine.

Equations
Instances For
    theorem tendsto_euler_sin_prod' {x : } (h0 : x 0) :
    Filter.Tendsto (fun (n : ) => iFinset.range n, (1 + sineTerm x i)) Filter.atTop (nhds (Complex.sin (Real.pi * x) / (Real.pi * x)))
    theorem multipliable_sineTerm (x : ) :
    Multipliable fun (i : ) => 1 + sineTerm x i
    theorem HasProdUniformlyOn_sineTerm_prod_on_compact {Z : Set } (hZ2 : Z Complex.integerComplement) (hZC : IsCompact Z) :
    HasProdUniformlyOn (fun (n : ) (z : ) => 1 + sineTerm z n) (fun (x : ) => Complex.sin (Real.pi * x) / (Real.pi * x)) {Z}
    theorem tendsto_logDeriv_euler_sin_div {x : } (hx : x Complex.integerComplement) :
    Filter.Tendsto (fun (n : ) => logDeriv (fun (z : ) => jFinset.range n, (1 + sineTerm z j)) x) Filter.atTop (nhds (logDeriv (fun (t : ) => Complex.sin (Real.pi * t) / (Real.pi * t)) x))
    theorem logDeriv_sin_div_eq_cot {x : } (hz : x Complex.integerComplement) :
    logDeriv (fun (t : ) => Complex.sin (Real.pi * t) / (Real.pi * t)) x = Real.pi * (Real.pi * x).cot - 1 / x
    @[reducible, inline]
    noncomputable abbrev cotTerm (x : ) (n : ) :

    The term in the infinite sum expansion of cot.

    Equations
    Instances For
      theorem logDeriv_sineTerm_eq_cotTerm {x : } (hx : x Complex.integerComplement) (i : ) :
      logDeriv (fun (z : ) => 1 + sineTerm z i) x = cotTerm x i
      theorem logDeriv_prod_sineTerm_eq_sum_cotTerm {x : } (hx : x Complex.integerComplement) (n : ) :
      logDeriv (fun (z : ) => jFinset.range n, (1 + sineTerm z j)) x = jFinset.range n, cotTerm x j
      theorem cotTerm_identity {x : } (hz : x Complex.integerComplement) (n : ) :
      cotTerm x n = 2 * x * (1 / ((x + (n + 1)) * (x - (n + 1))))
      theorem cot_series_rep' {x : } (hz : x Complex.integerComplement) :
      Real.pi * (Real.pi * x).cot - 1 / x = ∑' (n : ), (1 / (x - (n + 1)) + 1 / (x + (n + 1)))
      theorem cot_series_rep {x : } (hz : x Complex.integerComplement) :
      Real.pi * (Real.pi * x).cot = 1 / x + ∑' (n : ℕ+), (1 / (x - n) + 1 / (x + n))

      The cotangent infinite sum representation.