Documentation

Mathlib.Topology.Algebra.InfiniteSum.UniformOn

Infinite sum and products that converge uniformly on a set #

This file defines the notion of uniform convergence of infinite sums and products of functions, on a given family of subsets of their domain.

It also defines the notion of local uniform convergence of infinite sums and products of functions on a set.

Uniform convergence of sums and products #

def HasProdUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] (f : ιβα) (g : βα) (𝔖 : Set (Set β)) [UniformSpace α] :

HasProdUniformlyOn f g 𝔖 means that the (potentially infinite) product ∏' i, f i b for b : β converges uniformly on each s ∈ 𝔖 to g.

Equations
Instances For
    def HasSumUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] (f : ιβα) (g : βα) (𝔖 : Set (Set β)) [UniformSpace α] :

    HasSumUniformlyOn f g 𝔖 means that the (potentially infinite) sum ∑' i, f i b for b : β converges uniformly on each s ∈ 𝔖 to g.

    Equations
    Instances For
      def MultipliableUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] (f : ιβα) (𝔖 : Set (Set β)) [UniformSpace α] :

      MultipliableUniformlyOn f 𝔖 means that there is some infinite product to which f converges uniformly on every s ∈ 𝔖. Use fun x ↦ ∏' i, f i x to get the product function.

      Equations
      Instances For
        def SummableUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] (f : ιβα) (𝔖 : Set (Set β)) [UniformSpace α] :

        SummableUniformlyOn f s means that there is some infinite sum to which f converges uniformly on every s ∈ 𝔖. Use fun x ↦ ∑' i, f i x to get the sum function.

        Equations
        Instances For
          theorem MultipliableUniformlyOn.exists {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {𝔖 : Set (Set β)} [UniformSpace α] (h : MultipliableUniformlyOn f 𝔖) :
          ∃ (g : βα), HasProdUniformlyOn f g 𝔖
          theorem SummableUniformlyOn.exists {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {𝔖 : Set (Set β)} [UniformSpace α] (h : SummableUniformlyOn f 𝔖) :
          ∃ (g : βα), HasSumUniformlyOn f g 𝔖
          theorem HasProdUniformlyOn.multipliableUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {𝔖 : Set (Set β)} [UniformSpace α] (h : HasProdUniformlyOn f g 𝔖) :
          theorem HasSumUniformlyOn.summableUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {𝔖 : Set (Set β)} [UniformSpace α] (h : HasSumUniformlyOn f g 𝔖) :
          theorem hasProdUniformlyOn_iff_tendstoUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {𝔖 : Set (Set β)} [UniformSpace α] :
          HasProdUniformlyOn f g 𝔖 s𝔖, TendstoUniformlyOn (fun (I : Finset ι) (b : β) => iI, f i b) g Filter.atTop s
          theorem hasSumUniformlyOn_iff_tendstoUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {𝔖 : Set (Set β)} [UniformSpace α] :
          HasSumUniformlyOn f g 𝔖 s𝔖, TendstoUniformlyOn (fun (I : Finset ι) (b : β) => iI, f i b) g Filter.atTop s
          theorem HasProdUniformlyOn.hasProd {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {𝔖 : Set (Set β)} {x : β} {s : Set β} [UniformSpace α] (h : HasProdUniformlyOn f g 𝔖) (hs : s 𝔖) (hx : x s) :
          HasProd (fun (x_1 : ι) => f x_1 x) (g x)
          theorem HasSumUniformlyOn.hasSum {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {𝔖 : Set (Set β)} {x : β} {s : Set β} [UniformSpace α] (h : HasSumUniformlyOn f g 𝔖) (hs : s 𝔖) (hx : x s) :
          HasSum (fun (x_1 : ι) => f x_1 x) (g x)
          theorem HasProdUniformlyOn.tprod_eqOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {𝔖 : Set (Set β)} {s : Set β} [UniformSpace α] [T2Space α] (h : HasProdUniformlyOn f g 𝔖) (hs : s 𝔖) :
          Set.EqOn (fun (x : β) => ∏' (b : ι), f b x) g s
          theorem HasSumUniformlyOn.tsum_eqOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {𝔖 : Set (Set β)} {s : Set β} [UniformSpace α] [T2Space α] (h : HasSumUniformlyOn f g 𝔖) (hs : s 𝔖) :
          Set.EqOn (fun (x : β) => ∑' (b : ι), f b x) g s
          theorem HasProdUniformlyOn.tprod_eq {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {𝔖 : Set (Set β)} [UniformSpace α] [T2Space α] (h : HasProdUniformlyOn f g 𝔖) (hs : ⋃₀ 𝔖 = Set.univ) :
          (fun (x : β) => ∏' (b : ι), f b x) = g
          theorem HasSumUniformlyOn.tsum_eq {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {𝔖 : Set (Set β)} [UniformSpace α] [T2Space α] (h : HasSumUniformlyOn f g 𝔖) (hs : ⋃₀ 𝔖 = Set.univ) :
          (fun (x : β) => ∑' (b : ι), f b x) = g
          theorem MultipliableUniformlyOn.multipliable {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {𝔖 : Set (Set β)} {x : β} {s : Set β} [UniformSpace α] (h : MultipliableUniformlyOn f 𝔖) (hs : s 𝔖) (hx : x s) :
          Multipliable fun (x_1 : ι) => f x_1 x
          theorem SummableUniformlyOn.summable {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {𝔖 : Set (Set β)} {x : β} {s : Set β} [UniformSpace α] (h : SummableUniformlyOn f 𝔖) (hs : s 𝔖) (hx : x s) :
          Summable fun (x_1 : ι) => f x_1 x
          theorem MultipliableUniformlyOn.hasProdUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {𝔖 : Set (Set β)} [UniformSpace α] [T2Space α] (h : MultipliableUniformlyOn f 𝔖) :
          HasProdUniformlyOn f (fun (x : β) => ∏' (i : ι), f i x) 𝔖
          theorem SummableUniformlyOn.hasSumUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {𝔖 : Set (Set β)} [UniformSpace α] [T2Space α] (h : SummableUniformlyOn f 𝔖) :
          HasSumUniformlyOn f (fun (x : β) => ∑' (i : ι), f i x) 𝔖

          ## Locally uniform convergence of sums and products

          def HasProdLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] (f : ιβα) (g : βα) (s : Set β) [UniformSpace α] [TopologicalSpace β] :

          HasProdLocallyUniformlyOn f g s means that the (potentially infinite) product ∏' i, f i b for b : β converges locally uniformly on s to g b (in the sense of TendstoLocallyUniformlyOn).

          Equations
          Instances For
            def HasSumLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] (f : ιβα) (g : βα) (s : Set β) [UniformSpace α] [TopologicalSpace β] :

            HasSumLocallyUniformlyOn f g s means that the (potentially infinite) sum ∑' i, f i b for b : β converges locally uniformly on s to g b (in the sense of TendstoLocallyUniformlyOn).

            Equations
            Instances For
              def MultipliableLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] (f : ιβα) (s : Set β) [UniformSpace α] [TopologicalSpace β] :

              MultipliableLocallyUniformlyOn f s means that the product ∏' i, f i b converges locally uniformly on s to something.

              Equations
              Instances For
                def SummableLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] (f : ιβα) (s : Set β) [UniformSpace α] [TopologicalSpace β] :

                SummableLocallyUniformlyOn f s means that ∑' i, f i b converges locally uniformly on s to something.

                Equations
                Instances For
                  theorem hasProdLocallyUniformlyOn_iff_tendstoLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [TopologicalSpace β] :
                  HasProdLocallyUniformlyOn f g s TendstoLocallyUniformlyOn (fun (I : Finset ι) (b : β) => iI, f i b) g Filter.atTop s
                  theorem hasSumLocallyUniformlyOn_iff_tendstoLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [TopologicalSpace β] :
                  HasSumLocallyUniformlyOn f g s TendstoLocallyUniformlyOn (fun (I : Finset ι) (b : β) => iI, f i b) g Filter.atTop s
                  theorem hasProdLocallyUniformlyOn_of_of_forall_exists_nhd {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : xs, tnhdsWithin x s, HasProdUniformlyOn f g {t}) :

                  If every x ∈ s has a neighbourhood within s on which b ↦ ∏' i, f i b converges uniformly to g, then the product converges locally uniformly on s to g. Note that this is not a tautology, and the converse is only true if the domain is locally compact.

                  theorem hasSumLocallyUniformlyOn_of_of_forall_exists_nhd {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : xs, tnhdsWithin x s, HasSumUniformlyOn f g {t}) :

                  If every x ∈ s has a neighbourhood within s on which b ↦ ∑' i, f i b converges uniformly to g, then the sum converges locally uniformly. Note that this is not a tautology, and the converse is only true if the domain is locally compact.

                  theorem HasProdLocallyUniformlyOn.multipliableLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : HasProdLocallyUniformlyOn f g s) :
                  theorem HasSumLocallyUniformlyOn.summableLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : HasSumLocallyUniformlyOn f g s) :
                  theorem multipliableLocallyUniformlyOn_of_of_forall_exists_nhd {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {s : Set β} [UniformSpace α] [TopologicalSpace β] [T2Space α] (h : xs, tnhdsWithin x s, MultipliableUniformlyOn f {t}) :

                  If every x ∈ s has a neighbourhood within s on which b ↦ ∏' i, f i b converges uniformly, then the product converges locally uniformly on s. Note that this is not a tautology, and the converse is only true if the domain is locally compact.

                  theorem summableLocallyUniformlyOn_of_of_forall_exists_nhd {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {s : Set β} [UniformSpace α] [TopologicalSpace β] [T2Space α] (h : xs, tnhdsWithin x s, SummableUniformlyOn f {t}) :

                  If every x ∈ s has a neighbourhood within s on which b ↦ ∑' i, f i b converges uniformly, then the sum converges locally uniformly. Note that this is not a tautology, and the converse is only true if the domain is locally compact.

                  theorem HasProdLocallyUniformlyOn.hasProd {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {x : β} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : HasProdLocallyUniformlyOn f g s) (hx : x s) :
                  HasProd (fun (x_1 : ι) => f x_1 x) (g x)
                  theorem HasSumLocallyUniformlyOn.hasSum {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {x : β} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : HasSumLocallyUniformlyOn f g s) (hx : x s) :
                  HasSum (fun (x_1 : ι) => f x_1 x) (g x)
                  theorem MultipliableLocallyUniformlyOn.multipliable {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {x : β} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : MultipliableLocallyUniformlyOn f s) (hx : x s) :
                  Multipliable fun (x_1 : ι) => f x_1 x
                  theorem SummableLocallyUniformlyOn.summable {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {x : β} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : SummableLocallyUniformlyOn f s) (hx : x s) :
                  Summable fun (x_1 : ι) => f x_1 x
                  theorem MultipliableLocallyUniformlyOn.hasProdLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {s : Set β} [UniformSpace α] [TopologicalSpace β] [T2Space α] (h : MultipliableLocallyUniformlyOn f s) :
                  HasProdLocallyUniformlyOn f (fun (x : β) => ∏' (i : ι), f i x) s
                  theorem SummableLocallyUniformlyOn.hasSumLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {s : Set β} [UniformSpace α] [TopologicalSpace β] [T2Space α] (h : SummableLocallyUniformlyOn f s) :
                  HasSumLocallyUniformlyOn f (fun (x : β) => ∑' (i : ι), f i x) s
                  theorem HasProdLocallyUniformlyOn.tprod_eqOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [TopologicalSpace β] [T2Space α] (h : HasProdLocallyUniformlyOn f g s) :
                  Set.EqOn (fun (x : β) => ∏' (i : ι), f i x) g s
                  theorem HasSumLocallyUniformlyOn.tsum_eqOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [TopologicalSpace β] [T2Space α] (h : HasSumLocallyUniformlyOn f g s) :
                  Set.EqOn (fun (x : β) => ∑' (i : ι), f i x) g s