Documentation

Mathlib.Topology.Algebra.InfiniteSum.UniformOn

Infinite sum and products that converge uniformly #

Main definitions #

Uniform convergence of sums and products #

def HasProdUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] (f : ιβα) (g : βα) (s : Set β) [UniformSpace α] :

HasProdUniformlyOn f g s means that the (potentially infinite) product ∏' i, f i b for b : β converges uniformly on s to g.

Equations
Instances For
    def HasSumUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] (f : ιβα) (g : βα) (s : Set β) [UniformSpace α] :

    HasSumUniformlyOn f g s means that the (potentially infinite) sum ∑' i, f i b for b : β converges uniformly on s to g.

    Equations
    Instances For
      def MultipliableUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] (f : ιβα) (s : Set β) [UniformSpace α] :

      MultipliableUniformlyOn f s means that there is some infinite product to which f converges uniformly on s. Use fun x ↦ ∏' i, f i x to get the product function.

      Equations
      Instances For
        def SummableUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] (f : ιβα) (s : Set β) [UniformSpace α] :

        SummableUniformlyOn f s means that there is some infinite sum to which f converges uniformly on s. Use fun x ↦ ∑' i, f i x to get the sum function.

        Equations
        Instances For
          theorem MultipliableUniformlyOn.exists {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {s : Set β} [UniformSpace α] (h : MultipliableUniformlyOn f s) :
          ∃ (g : βα), HasProdUniformlyOn f g s
          theorem SummableUniformlyOn.exists {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {s : Set β} [UniformSpace α] (h : SummableUniformlyOn f s) :
          ∃ (g : βα), HasSumUniformlyOn f g s
          theorem HasProdUniformlyOn.multipliableUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] (h : HasProdUniformlyOn f g s) :
          theorem HasSumUniformlyOn.summableUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] (h : HasSumUniformlyOn f g s) :
          theorem hasProdUniformlyOn_iff_tendstoUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] :
          HasProdUniformlyOn f g s TendstoUniformlyOn (fun (x1 : Finset ι) (x2 : β) => ix1, f i x2) g Filter.atTop s
          theorem hasSumUniformlyOn_iff_tendstoUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] :
          HasSumUniformlyOn f g s TendstoUniformlyOn (fun (x1 : Finset ι) (x2 : β) => ix1, f i x2) g Filter.atTop s
          theorem HasProdUniformlyOn.tendstoUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] :
          HasProdUniformlyOn f g sTendstoUniformlyOn (fun (x1 : Finset ι) (x2 : β) => ix1, f i x2) g Filter.atTop s

          Alias of the forward direction of hasProdUniformlyOn_iff_tendstoUniformlyOn.

          theorem HasSumUniformlyOn.tendstoUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] :
          HasSumUniformlyOn f g sTendstoUniformlyOn (fun (x1 : Finset ι) (x2 : β) => ix1, f i x2) g Filter.atTop s
          theorem HasProdUniformlyOn.congr {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] {f' : ιβα} (h : HasProdUniformlyOn f g s) (hff' : ∀ᶠ (n : Finset ι) in Filter.atTop, Set.EqOn (fun (x : β) => in, f i x) (fun (x : β) => in, f' i x) s) :
          theorem HasSumUniformlyOn.congr {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] {f' : ιβα} (h : HasSumUniformlyOn f g s) (hff' : ∀ᶠ (n : Finset ι) in Filter.atTop, Set.EqOn (fun (x : β) => in, f i x) (fun (x : β) => in, f' i x) s) :
          theorem HasProdUniformlyOn.congr_right {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] {g' : βα} (h : HasProdUniformlyOn f g s) (hgg' : Set.EqOn g g' s) :
          theorem HasSumUniformlyOn.congr_right {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] {g' : βα} (h : HasSumUniformlyOn f g s) (hgg' : Set.EqOn g g' s) :
          theorem HasProdUniformlyOn.tendstoUniformlyOn_finsetRange {α : Type u_1} {β : Type u_2} [CommMonoid α] {g : βα} {s : Set β} [UniformSpace α] {f : βα} (h : HasProdUniformlyOn f g s) :
          TendstoUniformlyOn (fun (x1 : ) (x2 : β) => iFinset.range x1, f i x2) g Filter.atTop s
          theorem HasSumUniformlyOn.tendstoUniformlyOn_finsetRange {α : Type u_1} {β : Type u_2} [AddCommMonoid α] {g : βα} {s : Set β} [UniformSpace α] {f : βα} (h : HasSumUniformlyOn f g s) :
          TendstoUniformlyOn (fun (x1 : ) (x2 : β) => iFinset.range x1, f i x2) g Filter.atTop s
          theorem HasProdUniformlyOn.hasProd {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {x : β} {s : Set β} [UniformSpace α] (h : HasProdUniformlyOn f g s) (hx : x s) :
          HasProd (fun (x_1 : ι) => f x_1 x) (g x)
          theorem HasSumUniformlyOn.hasSum {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {x : β} {s : Set β} [UniformSpace α] (h : HasSumUniformlyOn f g s) (hx : x s) :
          HasSum (fun (x_1 : ι) => f x_1 x) (g x)
          theorem HasProdUniformlyOn.tprod_eqOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [T2Space α] (h : HasProdUniformlyOn f g s) :
          Set.EqOn (fun (x : β) => ∏' (b : ι), f b x) g s
          theorem HasSumUniformlyOn.tsum_eqOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [T2Space α] (h : HasSumUniformlyOn f g s) :
          Set.EqOn (fun (x : β) => ∑' (b : ι), f b x) g s
          @[deprecated HasProdUniformlyOn.tprod_eqOn (since := "2025-11-23")]
          theorem HasProdUniformlyOn.tprod_eq {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [T2Space α] (h : HasProdUniformlyOn f g s) :
          Set.EqOn (fun (x : β) => ∏' (b : ι), f b x) g s

          Alias of HasProdUniformlyOn.tprod_eqOn.

          @[deprecated HasSumUniformlyOn.tsum_eqOn (since := "2025-11-23")]
          theorem HasSumUniformlyOn.tsum_eq {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [T2Space α] (h : HasSumUniformlyOn f g s) :
          Set.EqOn (fun (x : β) => ∑' (b : ι), f b x) g s

          Alias of HasSumUniformlyOn.tsum_eqOn.

          theorem MultipliableUniformlyOn.multipliable {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {x : β} {s : Set β} [UniformSpace α] (h : MultipliableUniformlyOn f s) (hx : x s) :
          Multipliable fun (x_1 : ι) => f x_1 x
          theorem SummableUniformlyOn.summable {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {x : β} {s : Set β} [UniformSpace α] (h : SummableUniformlyOn f s) (hx : x s) :
          Summable fun (x_1 : ι) => f x_1 x
          theorem MultipliableUniformlyOn.hasProdUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {s : Set β} [UniformSpace α] (h : MultipliableUniformlyOn f s) :
          HasProdUniformlyOn f (fun (x : β) => ∏' (i : ι), f i x) s
          theorem SummableUniformlyOn.hasSumUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {s : Set β} [UniformSpace α] (h : SummableUniformlyOn f s) :
          HasSumUniformlyOn f (fun (x : β) => ∑' (i : ι), f i x) s
          theorem multipliableUniformlyOn_iff_hasProdUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {s : Set β} [UniformSpace α] :
          MultipliableUniformlyOn f s HasProdUniformlyOn f (fun (x : β) => ∏' (i : ι), f i x) s
          theorem summableUniformlyOn_iff_hasSumUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {s : Set β} [UniformSpace α] :
          SummableUniformlyOn f s HasSumUniformlyOn f (fun (x : β) => ∑' (i : ι), f i x) s
          theorem HasProdUniformlyOn.mono {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] {t : Set β} (h : HasProdUniformlyOn f g t) (hst : s t) :
          theorem HasSumUniformlyOn.mono {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] {t : Set β} (h : HasSumUniformlyOn f g t) (hst : s t) :
          theorem MultipliableUniformlyOn.mono {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {s : Set β} [UniformSpace α] {t : Set β} (h : MultipliableUniformlyOn f t) (hst : s t) :
          theorem SummableUniformlyOn.mono {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {s : Set β} [UniformSpace α] {t : Set β} (h : SummableUniformlyOn f t) (hst : s t) :

          Locally uniform convergence of sums and products #

          def HasProdLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] (f : ιβα) (g : βα) (s : Set β) [UniformSpace α] [TopologicalSpace β] :

          HasProdLocallyUniformlyOn f g s means that the (potentially infinite) product ∏' i, f i b for b : β converges locally uniformly on s to g b (in the sense of TendstoLocallyUniformlyOn).

          Equations
          Instances For
            def HasSumLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] (f : ιβα) (g : βα) (s : Set β) [UniformSpace α] [TopologicalSpace β] :

            HasSumLocallyUniformlyOn f g s means that the (potentially infinite) sum ∑' i, f i b for b : β converges locally uniformly on s to g b (in the sense of TendstoLocallyUniformlyOn).

            Equations
            Instances For
              def MultipliableLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] (f : ιβα) (s : Set β) [UniformSpace α] [TopologicalSpace β] :

              MultipliableLocallyUniformlyOn f s means that the product ∏' i, f i b converges locally uniformly on s to something.

              Equations
              Instances For
                def SummableLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] (f : ιβα) (s : Set β) [UniformSpace α] [TopologicalSpace β] :

                SummableLocallyUniformlyOn f s means that ∑' i, f i b converges locally uniformly on s to something.

                Equations
                Instances For
                  theorem hasProdLocallyUniformlyOn_iff_tendstoLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [TopologicalSpace β] :
                  HasProdLocallyUniformlyOn f g s TendstoLocallyUniformlyOn (fun (x1 : Finset ι) (x2 : β) => ix1, f i x2) g Filter.atTop s
                  theorem hasSumLocallyUniformlyOn_iff_tendstoLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [TopologicalSpace β] :
                  HasSumLocallyUniformlyOn f g s TendstoLocallyUniformlyOn (fun (x1 : Finset ι) (x2 : β) => ix1, f i x2) g Filter.atTop s
                  theorem hasProdLocallyUniformlyOn_of_of_forall_exists_nhds {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : xs, tnhdsWithin x s, HasProdUniformlyOn f g t) :

                  If every x ∈ s has a neighbourhood within s on which b ↦ ∏' i, f i b converges uniformly to g, then the product converges locally uniformly on s to g. Note that this is not a tautology, and the converse is only true if the domain is locally compact.

                  theorem hasSumLocallyUniformlyOn_of_of_forall_exists_nhds {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : xs, tnhdsWithin x s, HasSumUniformlyOn f g t) :

                  If every x ∈ s has a neighbourhood within s on which b ↦ ∑' i, f i b converges uniformly to g, then the sum converges locally uniformly. Note that this is not a tautology, and the converse is only true if the domain is locally compact.

                  theorem HasProdLocallyUniformlyOn.hasProdUniformlyOn_of_isCompact {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : HasProdLocallyUniformlyOn f g s) (hs : IsCompact s) :
                  theorem HasProdLocallyUniformlyOn.exists_hasProdUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {x : β} {s : Set β} [UniformSpace α] [TopologicalSpace β] [LocallyCompactSpace β] (h : HasProdLocallyUniformlyOn f g s) (hx : s nhds x) :
                  tnhdsWithin x s, HasProdUniformlyOn f g t
                  @[deprecated hasProdLocallyUniformlyOn_of_of_forall_exists_nhds (since := "2025-05-22")]
                  theorem hasProdLocallyUniformlyOn_of_of_forall_exists_nhd {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : xs, tnhdsWithin x s, HasProdUniformlyOn f g t) :

                  Alias of hasProdLocallyUniformlyOn_of_of_forall_exists_nhds.


                  If every x ∈ s has a neighbourhood within s on which b ↦ ∏' i, f i b converges uniformly to g, then the product converges locally uniformly on s to g. Note that this is not a tautology, and the converse is only true if the domain is locally compact.

                  @[deprecated hasSumLocallyUniformlyOn_of_of_forall_exists_nhds (since := "2025-05-22")]
                  theorem hasSumLocallyUniformlyOn_of_of_forall_exists_nhd {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : xs, tnhdsWithin x s, HasSumUniformlyOn f g t) :

                  Alias of hasSumLocallyUniformlyOn_of_of_forall_exists_nhds.


                  If every x ∈ s has a neighbourhood within s on which b ↦ ∑' i, f i b converges uniformly to g, then the sum converges locally uniformly. Note that this is not a tautology, and the converse is only true if the domain is locally compact.

                  theorem HasProdUniformlyOn.hasProdLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : HasProdUniformlyOn f g s) :
                  theorem HasSumUniformlyOn.hasSumLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : HasSumUniformlyOn f g s) :
                  theorem hasProdLocallyUniformlyOn_of_forall_compact {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [TopologicalSpace β] (hs : IsOpen s) [LocallyCompactSpace β] (h : Ks, IsCompact KHasProdUniformlyOn f g K) :
                  theorem hasSumLocallyUniformlyOn_of_forall_compact {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [TopologicalSpace β] (hs : IsOpen s) [LocallyCompactSpace β] (h : Ks, IsCompact KHasSumUniformlyOn f g K) :
                  theorem HasProdLocallyUniformlyOn.multipliableLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : HasProdLocallyUniformlyOn f g s) :
                  theorem HasSumLocallyUniformlyOn.summableLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : HasSumLocallyUniformlyOn f g s) :
                  theorem HasProdLocallyUniformlyOn.mono {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [TopologicalSpace β] {t : Set β} (h : HasProdLocallyUniformlyOn f g t) (hst : s t) :
                  theorem HasSumLocallyUniformlyOn.mono {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [TopologicalSpace β] {t : Set β} (h : HasSumLocallyUniformlyOn f g t) (hst : s t) :
                  theorem MultipliableLocallyUniformlyOn.mono {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {s : Set β} [UniformSpace α] [TopologicalSpace β] {t : Set β} (h : MultipliableLocallyUniformlyOn f t) (hst : s t) :
                  theorem SummableLocallyUniformlyOn.mono {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {s : Set β} [UniformSpace α] [TopologicalSpace β] {t : Set β} (h : SummableLocallyUniformlyOn f t) (hst : s t) :
                  theorem multipliableLocallyUniformlyOn_of_of_forall_exists_nhds {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : xs, tnhdsWithin x s, MultipliableUniformlyOn f t) :

                  If every x ∈ s has a neighbourhood within s on which b ↦ ∏' i, f i b converges uniformly, then the product converges locally uniformly on s. Note that this is not a tautology, and the converse is only true if the domain is locally compact.

                  theorem summableLocallyUniformlyOn_of_of_forall_exists_nhds {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : xs, tnhdsWithin x s, SummableUniformlyOn f t) :

                  If every x ∈ s has a neighbourhood within s on which b ↦ ∑' i, f i b converges uniformly, then the sum converges locally uniformly. Note that this is not a tautology, and the converse is only true if the domain is locally compact.

                  @[deprecated multipliableLocallyUniformlyOn_of_of_forall_exists_nhds (since := "2025-05-22")]
                  theorem multipliableLocallyUniformlyOn_of_of_forall_exists_nhd {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : xs, tnhdsWithin x s, MultipliableUniformlyOn f t) :

                  Alias of multipliableLocallyUniformlyOn_of_of_forall_exists_nhds.


                  If every x ∈ s has a neighbourhood within s on which b ↦ ∏' i, f i b converges uniformly, then the product converges locally uniformly on s. Note that this is not a tautology, and the converse is only true if the domain is locally compact.

                  @[deprecated summableLocallyUniformlyOn_of_of_forall_exists_nhds (since := "2025-05-22")]
                  theorem summableLocallyUniformlyOn_of_of_forall_exists_nhd {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : xs, tnhdsWithin x s, SummableUniformlyOn f t) :

                  Alias of summableLocallyUniformlyOn_of_of_forall_exists_nhds.


                  If every x ∈ s has a neighbourhood within s on which b ↦ ∑' i, f i b converges uniformly, then the sum converges locally uniformly. Note that this is not a tautology, and the converse is only true if the domain is locally compact.

                  theorem MultipliableLocallyUniformlyOn.exists_multipliableUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {x : β} {s : Set β} [UniformSpace α] [TopologicalSpace β] [LocallyCompactSpace β] (h : MultipliableLocallyUniformlyOn f s) (hx : s nhds x) :
                  theorem HasProdLocallyUniformlyOn.hasProd {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {x : β} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : HasProdLocallyUniformlyOn f g s) (hx : x s) :
                  HasProd (fun (x_1 : ι) => f x_1 x) (g x)
                  theorem HasSumLocallyUniformlyOn.hasSum {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {x : β} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : HasSumLocallyUniformlyOn f g s) (hx : x s) :
                  HasSum (fun (x_1 : ι) => f x_1 x) (g x)
                  theorem MultipliableLocallyUniformlyOn.multipliable {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {x : β} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : MultipliableLocallyUniformlyOn f s) (hx : x s) :
                  Multipliable fun (x_1 : ι) => f x_1 x
                  theorem SummableLocallyUniformlyOn.summable {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {x : β} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : SummableLocallyUniformlyOn f s) (hx : x s) :
                  Summable fun (x_1 : ι) => f x_1 x
                  theorem MultipliableLocallyUniformlyOn.hasProdLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : MultipliableLocallyUniformlyOn f s) :
                  HasProdLocallyUniformlyOn f (fun (x : β) => ∏' (i : ι), f i x) s
                  theorem SummableLocallyUniformlyOn.hasSumLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : SummableLocallyUniformlyOn f s) :
                  HasSumLocallyUniformlyOn f (fun (x : β) => ∑' (i : ι), f i x) s
                  theorem HasProdLocallyUniformlyOn.tprod_eqOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [TopologicalSpace β] [T2Space α] (h : HasProdLocallyUniformlyOn f g s) :
                  Set.EqOn (fun (x : β) => ∏' (i : ι), f i x) g s
                  theorem HasSumLocallyUniformlyOn.tsum_eqOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [TopologicalSpace β] [T2Space α] (h : HasSumLocallyUniformlyOn f g s) :
                  Set.EqOn (fun (x : β) => ∑' (i : ι), f i x) g s
                  theorem MultipliableLocallyUniformlyOn_congr {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {s : Set β} [UniformSpace α] [TopologicalSpace β] {f f' : ιβα} (h : ∀ (i : ι), Set.EqOn (f i) (f' i) s) (h2 : MultipliableLocallyUniformlyOn f s) :
                  theorem SummableLocallyUniformlyOn_congr {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {s : Set β} [UniformSpace α] [TopologicalSpace β] {f f' : ιβα} (h : ∀ (i : ι), Set.EqOn (f i) (f' i) s) (h2 : SummableLocallyUniformlyOn f s) :
                  theorem HasProdLocallyUniformlyOn.tendstoLocallyUniformlyOn_finsetRange {α : Type u_1} {β : Type u_2} [CommMonoid α] {g : βα} {s : Set β} [UniformSpace α] [TopologicalSpace β] {f : βα} (h : HasProdLocallyUniformlyOn f g s) :
                  TendstoLocallyUniformlyOn (fun (N : ) (b : β) => iFinset.range N, f i b) g Filter.atTop s
                  theorem HasSumLocallyUniformlyOn.tendstoLocallyUniformlyOn_finsetRange {α : Type u_1} {β : Type u_2} [AddCommMonoid α] {g : βα} {s : Set β} [UniformSpace α] [TopologicalSpace β] {f : βα} (h : HasSumLocallyUniformlyOn f g s) :
                  TendstoLocallyUniformlyOn (fun (N : ) (b : β) => iFinset.range N, f i b) g Filter.atTop s
                  theorem multipliableLocallyUniformlyOn_iff_hasProdLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {s : Set β} [UniformSpace α] [TopologicalSpace β] :
                  MultipliableLocallyUniformlyOn f s HasProdLocallyUniformlyOn f (fun (x : β) => ∏' (i : ι), f i x) s
                  theorem summableLocallyUniformlyOn_iff_hasSumLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {s : Set β} [UniformSpace α] [TopologicalSpace β] :
                  SummableLocallyUniformlyOn f s HasSumLocallyUniformlyOn f (fun (x : β) => ∑' (i : ι), f i x) s
                  def HasProdUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] (f : ιβα) (g : βα) [UniformSpace α] :

                  HasProdUniformly f g means that the product ∏ i, f i b converges uniformly (wrt b) to g.

                  Equations
                  Instances For
                    def HasSumUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] (f : ιβα) (g : βα) [UniformSpace α] :

                    HasSumUniformly f g means that the sum ∑ i, f i b converges uniformly (wrt b) to g.

                    Equations
                    Instances For
                      def MultipliableUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] (f : ιβα) [UniformSpace α] :

                      MultipliableUniformly f means that there is some infinite product to which f converges uniformly. Use fun x ↦ ∏' i, f i x to get the product function.

                      Equations
                      Instances For
                        def SummableUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] (f : ιβα) [UniformSpace α] :

                        SummableUniformly f means that there is some infinite sum to which f converges uniformly. Use fun x ↦ ∑' i, f i x to get the product function.

                        Equations
                        Instances For
                          theorem MultipliableUniformly.exists {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} [UniformSpace α] (h : MultipliableUniformly f) :
                          ∃ (g : βα), HasProdUniformly f g
                          theorem SummableUniformly.exists {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} [UniformSpace α] (h : SummableUniformly f) :
                          ∃ (g : βα), HasSumUniformly f g
                          theorem HasProdUniformly.multipliableUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} [UniformSpace α] (h : HasProdUniformly f g) :
                          theorem HasSumUniformly.summableUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} [UniformSpace α] (h : HasSumUniformly f g) :
                          theorem hasProdUniformly_iff_tendstoUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} [UniformSpace α] :
                          HasProdUniformly f g TendstoUniformly (fun (x1 : Finset ι) (x2 : β) => ix1, f i x2) g Filter.atTop
                          theorem hasSumUniformly_iff_tendstoUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} [UniformSpace α] :
                          HasSumUniformly f g TendstoUniformly (fun (x1 : Finset ι) (x2 : β) => ix1, f i x2) g Filter.atTop
                          theorem HasProdUniformly.tendstoUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} [UniformSpace α] :
                          HasProdUniformly f gTendstoUniformly (fun (x1 : Finset ι) (x2 : β) => ix1, f i x2) g Filter.atTop

                          Alias of the forward direction of hasProdUniformly_iff_tendstoUniformly.

                          theorem HasSumUniformly.tendstoUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} [UniformSpace α] :
                          HasSumUniformly f gTendstoUniformly (fun (x1 : Finset ι) (x2 : β) => ix1, f i x2) g Filter.atTop
                          theorem HasProdUniformly.hasProdUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] (h : HasProdUniformly f g) :
                          theorem HasSumUniformly.hasSumUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] (h : HasSumUniformly f g) :
                          theorem hasProdUniformlyOn_univ_iff {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} [UniformSpace α] :
                          theorem hasSumUniformlyOn_univ_iff {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} [UniformSpace α] :
                          theorem MultipliableUniformly.multipliableUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {s : Set β} [UniformSpace α] (h : MultipliableUniformly f) :
                          theorem SummableUniformly.summableUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {s : Set β} [UniformSpace α] (h : SummableUniformly f) :
                          theorem multipliableUniformlyOn_univ_iff {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} [UniformSpace α] :
                          theorem summableUniformlyOn_univ_iff {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} [UniformSpace α] :
                          theorem HasProdUniformly.congr {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} [UniformSpace α] {f' : ιβα} (h : HasProdUniformly f g) (hff' : ∀ᶠ (n : Finset ι) in Filter.atTop, ∀ (b : β), in, f i b = in, f' i b) :
                          theorem HasSumUniformly.congr {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} [UniformSpace α] {f' : ιβα} (h : HasSumUniformly f g) (hff' : ∀ᶠ (n : Finset ι) in Filter.atTop, ∀ (b : β), in, f i b = in, f' i b) :
                          theorem HasProdUniformly.tendstoUniformlyOn_finsetRange {α : Type u_1} {β : Type u_2} [CommMonoid α] {g : βα} [UniformSpace α] {f : βα} (h : HasProdUniformly f g) :
                          TendstoUniformly (fun (x1 : ) (x2 : β) => iFinset.range x1, f i x2) g Filter.atTop
                          theorem HasSumUniformly.tendstoUniformlyOn_finsetRange {α : Type u_1} {β : Type u_2} [AddCommMonoid α] {g : βα} [UniformSpace α] {f : βα} (h : HasSumUniformly f g) :
                          TendstoUniformly (fun (x1 : ) (x2 : β) => iFinset.range x1, f i x2) g Filter.atTop
                          theorem HasProdUniformly.hasProd {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {x : β} [UniformSpace α] (h : HasProdUniformly f g) :
                          HasProd (fun (x_1 : ι) => f x_1 x) (g x)
                          theorem HasSumUniformly.hasSum {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {x : β} [UniformSpace α] (h : HasSumUniformly f g) :
                          HasSum (fun (x_1 : ι) => f x_1 x) (g x)
                          theorem MultipliableUniformly.multipliable {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {x : β} [UniformSpace α] (h : MultipliableUniformly f) :
                          Multipliable fun (x_1 : ι) => f x_1 x
                          theorem SummableUniformly.summable {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {x : β} [UniformSpace α] (h : SummableUniformly f) :
                          Summable fun (x_1 : ι) => f x_1 x
                          theorem MultipliableUniformly.hasProdUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} [UniformSpace α] (h : MultipliableUniformly f) :
                          HasProdUniformly f fun (x : β) => ∏' (i : ι), f i x
                          theorem SummableUniformly.hasSumUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} [UniformSpace α] (h : SummableUniformly f) :
                          HasSumUniformly f fun (x : β) => ∑' (i : ι), f i x
                          theorem multipliableUniformly_iff_hasProdUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} [UniformSpace α] :
                          MultipliableUniformly f HasProdUniformly f fun (x : β) => ∏' (i : ι), f i x
                          theorem summableUniformly_iff_hasSumUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} [UniformSpace α] :
                          SummableUniformly f HasSumUniformly f fun (x : β) => ∑' (i : ι), f i x

                          Locally uniform convergence of sums and products #

                          def HasProdLocallyUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] (f : ιβα) (g : βα) [UniformSpace α] [TopologicalSpace β] :

                          HasProdLocallyUniformly f g means that the (potentially infinite) product ∏' i, f i b for b : β converges locally uniformly to g b (in the sense of TendstoLocallyUniformly).

                          Equations
                          Instances For
                            def HasSumLocallyUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] (f : ιβα) (g : βα) [UniformSpace α] [TopologicalSpace β] :

                            HasSumLocallyUniformly f g means that the (potentially infinite) sum ∑' i, f i b for b : β converges locally uniformly to g b (in the sense of TendstoLocallyUniformly).

                            Equations
                            Instances For
                              def MultipliableLocallyUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] (f : ιβα) [UniformSpace α] [TopologicalSpace β] :

                              MultipliableLocallyUniformly f means that the product ∏' i, f i b converges locally uniformly to something.

                              Equations
                              Instances For
                                def SummableLocallyUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] (f : ιβα) [UniformSpace α] [TopologicalSpace β] :

                                SummableLocallyUniformly f means that ∑' i, f i b converges locally uniformly to something.

                                Equations
                                Instances For
                                  theorem MultipliableLocallyUniformly.exists {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} [UniformSpace α] [TopologicalSpace β] (h : MultipliableLocallyUniformly f) :
                                  ∃ (g : βα), HasProdLocallyUniformly f g
                                  theorem SummableLocallyUniformly.exists {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} [UniformSpace α] [TopologicalSpace β] (h : SummableLocallyUniformly f) :
                                  ∃ (g : βα), HasSumLocallyUniformly f g
                                  theorem HasProdLocallyUniformly.multipliableLocallyUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} [UniformSpace α] [TopologicalSpace β] (h : HasProdLocallyUniformly f g) :
                                  theorem HasSumLocallyUniformly.summableLocallyUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} [UniformSpace α] [TopologicalSpace β] (h : HasSumLocallyUniformly f g) :
                                  theorem hasProdLocallyUniformly_iff_tendstoLocallyUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} [UniformSpace α] [TopologicalSpace β] :
                                  HasProdLocallyUniformly f g TendstoLocallyUniformly (fun (x1 : Finset ι) (x2 : β) => ix1, f i x2) g Filter.atTop
                                  theorem hasSumLocallyUniformly_iff_tendstoLocallyUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} [UniformSpace α] [TopologicalSpace β] :
                                  HasSumLocallyUniformly f g TendstoLocallyUniformly (fun (x1 : Finset ι) (x2 : β) => ix1, f i x2) g Filter.atTop
                                  theorem HasProdLocallyUniformly.hasProdLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : HasProdLocallyUniformly f g) :
                                  theorem HasSumLocallyUniformly.hasSumLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : HasSumLocallyUniformly f g) :
                                  theorem SummableLocallyUniformly.summableLocallyUniformlyOn {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {s : Set β} [UniformSpace α] [TopologicalSpace β] (h : SummableLocallyUniformly f) :
                                  theorem hasProdLocallyUniformly_of_of_forall_exists_nhds {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} [UniformSpace α] [TopologicalSpace β] (h : ∀ (x : β), tnhds x, HasProdUniformlyOn f g t) :

                                  If every x has a neighbourhood on which b ↦ ∏' i, f i b converges uniformly to g, then the product converges locally uniformly to g. Note that this is not a tautology, and the converse is only true if the domain is locally compact.

                                  theorem hasSumLocallyUniformly_of_of_forall_exists_nhds {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} [UniformSpace α] [TopologicalSpace β] (h : ∀ (x : β), tnhds x, HasSumUniformlyOn f g t) :

                                  If every x has a neighbourhood on which b ↦ ∑' i, f i b converges uniformly to g, then the sum converges locally uniformly. Note that this is not a tautology, and the converse is only true if the domain is locally compact.

                                  theorem HasProdUniformly.hasProdLocallyUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} [UniformSpace α] [TopologicalSpace β] (h : HasProdUniformly f g) :
                                  theorem HasSumUniformly.hasSumLocallyUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} [UniformSpace α] [TopologicalSpace β] (h : HasSumUniformly f g) :
                                  theorem hasProdLocallyUniformly_of_forall_compact {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} [UniformSpace α] [TopologicalSpace β] [LocallyCompactSpace β] (h : ∀ (K : Set β), IsCompact KHasProdUniformlyOn f g K) :
                                  theorem hasSumLocallyUniformly_of_forall_compact {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} [UniformSpace α] [TopologicalSpace β] [LocallyCompactSpace β] (h : ∀ (K : Set β), IsCompact KHasSumUniformlyOn f g K) :
                                  theorem multipliableLocallyUniformly_of_of_forall_exists_nhds {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} [UniformSpace α] [TopologicalSpace β] (h : ∀ (x : β), tnhds x, MultipliableUniformlyOn f t) :
                                  theorem summableLocallyUniformly_of_of_forall_exists_nhds {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} [UniformSpace α] [TopologicalSpace β] (h : ∀ (x : β), tnhds x, SummableUniformlyOn f t) :
                                  theorem HasProdLocallyUniformly.hasProd {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {g : βα} {x : β} [UniformSpace α] [TopologicalSpace β] (h : HasProdLocallyUniformly f g) :
                                  HasProd (fun (x_1 : ι) => f x_1 x) (g x)
                                  theorem HasSumLocallyUniformly.hasSum {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {g : βα} {x : β} [UniformSpace α] [TopologicalSpace β] (h : HasSumLocallyUniformly f g) :
                                  HasSum (fun (x_1 : ι) => f x_1 x) (g x)
                                  theorem MultipliableLocallyUniformly.multipliable {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} {x : β} [UniformSpace α] [TopologicalSpace β] (h : MultipliableLocallyUniformly f) :
                                  Multipliable fun (x_1 : ι) => f x_1 x
                                  theorem SummableLocallyUniformly.summable {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} {x : β} [UniformSpace α] [TopologicalSpace β] (h : SummableLocallyUniformly f) :
                                  Summable fun (x_1 : ι) => f x_1 x
                                  theorem MultipliableLocallyUniformly.hasProdLocallyUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} [UniformSpace α] [TopologicalSpace β] (h : MultipliableLocallyUniformly f) :
                                  HasProdLocallyUniformly f fun (x : β) => ∏' (i : ι), f i x
                                  theorem SummableLocallyUniformly.hasSumLocallyUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} [UniformSpace α] [TopologicalSpace β] (h : SummableLocallyUniformly f) :
                                  HasSumLocallyUniformly f fun (x : β) => ∑' (i : ι), f i x
                                  theorem multipliableLocallyUniformly_iff_hasProdLocallyUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_3} [CommMonoid α] {f : ιβα} [UniformSpace α] [TopologicalSpace β] :
                                  theorem summableLocallyUniformly_iff_hasSumLocallyUniformly {α : Type u_1} {β : Type u_2} {ι : Type u_3} [AddCommMonoid α] {f : ιβα} [UniformSpace α] [TopologicalSpace β] :
                                  SummableLocallyUniformly f HasSumLocallyUniformly f fun (x : β) => ∑' (i : ι), f i x
                                  theorem HasProdLocallyUniformly.tendstoLocallyUniformly_finsetRange {α : Type u_1} {β : Type u_2} [CommMonoid α] {g : βα} [UniformSpace α] [TopologicalSpace β] {f : βα} (h : HasProdLocallyUniformly f g) :
                                  TendstoLocallyUniformly (fun (x1 : ) (x2 : β) => iFinset.range x1, f i x2) g Filter.atTop
                                  theorem HasSumLocallyUniformly.tendstoLocallyUniformly_finsetRange {α : Type u_1} {β : Type u_2} [AddCommMonoid α] {g : βα} [UniformSpace α] [TopologicalSpace β] {f : βα} (h : HasSumLocallyUniformly f g) :
                                  TendstoLocallyUniformly (fun (x1 : ) (x2 : β) => iFinset.range x1, f i x2) g Filter.atTop