Documentation

Mathlib.Order.Filter.AtTopBot.Finset

Filter.atTop and Filter.atBot filters and finite sets. #

theorem Filter.atTop_finset_eq_iInf {α : Type u_3} :
atTop = ⨅ (x : α), principal (Set.Ici {x})
theorem Filter.tendsto_atTop_finset_of_monotone {α : Type u_3} {β : Type u_4} [Preorder β] {f : βFinset α} (h : Monotone f) (h' : ∀ (x : α), ∃ (n : β), x f n) :

If f is a monotone sequence of Finsets and each x belongs to one of f n, then Tendsto f atTop atTop.

theorem Monotone.tendsto_atTop_finset {α : Type u_3} {β : Type u_4} [Preorder β] {f : βFinset α} (h : Monotone f) (h' : ∀ (x : α), ∃ (n : β), x f n) :

Alias of Filter.tendsto_atTop_finset_of_monotone.


If f is a monotone sequence of Finsets and each x belongs to one of f n, then Tendsto f atTop atTop.

theorem Filter.tendsto_finset_image_atTop_atTop {β : Type u_4} {γ : Type u_5} [DecidableEq β] {i : βγ} {j : γβ} (h : Function.LeftInverse j i) :
theorem Filter.tendsto_finset_preimage_atTop_atTop {α : Type u_3} {β : Type u_4} {f : αβ} (hf : Function.Injective f) :
Tendsto (fun (s : Finset β) => s.preimage f ) atTop atTop