Basic results on Filter.atTop
and Filter.atBot
filters #
In this file we prove many lemmas like “if f → +∞
, then f ± c → +∞
”.
Alias of the forward direction of Filter.eventually_atTop
.
Alias of the forward direction of Filter.eventually_atBot
.
Sequences #
If u
is a sequence which is unbounded above,
then after any point, it reaches a value strictly greater than all previous values.
If u
is a sequence which is unbounded below,
then after any point, it reaches a value strictly smaller than all previous values.
If u
is a sequence which is unbounded above,
then it Frequently
reaches a value strictly greater than all previous values.
If u
is a sequence which is unbounded below,
then it Frequently
reaches a value strictly smaller than all previous values.
A function f
grows to +∞
independent of an order-preserving embedding e
.
A function f
maps upwards closed sets (atTop sets) to upwards closed sets when it is a
Galois insertion. The Galois "insertion" and "connection" is weakened to only require it to be an
insertion and a connection above b
.
A function f
maps upwards closed sets (atTop sets) to upwards closed sets when it is a
Galois insertion. The Galois "insertion" and "connection" is weakened to only require it to be an
insertion and a connection above b
.
The image of the filter atTop
on Ici a
under the coercion equals atTop
.
The image of the filter atTop
on Ioi a
under the coercion equals atTop
.
The atTop
filter for an open interval Ioi a
comes from the atTop
filter in the ambient
order.
The atTop
filter for an open interval Ici a
comes from the atTop
filter in the ambient
order.
The atBot
filter for an open interval Iio a
comes from the atBot
filter in the ambient
order.
The atBot
filter for an open interval Iio a
comes from the atBot
filter in the ambient
order.
The atBot
filter for an open interval Iic a
comes from the atBot
filter in the ambient
order.
The atBot
filter for an open interval Iic a
comes from the atBot
filter in the ambient
order.
Given an antitone basis s : ℕ → Set α
of a filter, extract an antitone subbasis s ∘ φ
,
φ : ℕ → ℕ
, such that m < n
implies r (φ m) (φ n)
. This lemma can be used to extract an
antitone basis with basis sets decreasing "sufficiently fast".