Results on discretized exponentials #
We state several auxiliary results pertaining to sequences of the form ⌊c^n⌋₊
.
tendsto_div_of_monotone_of_tendsto_div_floor_pow
: If a monotone sequenceu
is such thatu ⌊c^n⌋₊ / ⌊c^n⌋₊
converges to a limitl
for allc > 1
, thenu n / n
tends tol
.sum_div_nat_floor_pow_sq_le_div_sq
: The sum of1/⌊c^i⌋₊^2
above a thresholdj
is comparable to1/j^2
, up to a multiplicative constant.
theorem
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
(u : Nat → Real)
(l : Real)
(hmono : Monotone u)
(hlim :
∀ (a : Real),
LT.lt 1 a →
Exists fun (c : Nat → Nat) =>
And (Filter.Eventually (fun (n : Nat) => LE.le (c (HAdd.hAdd n 1)).cast (HMul.hMul a (c n).cast)) Filter.atTop)
(And (Filter.Tendsto c Filter.atTop Filter.atTop)
(Filter.Tendsto (fun (n : Nat) => HDiv.hDiv (u (c n)) (c n).cast) Filter.atTop (nhds l))))
:
Filter.Tendsto (fun (n : Nat) => HDiv.hDiv (u n) n.cast) Filter.atTop (nhds l)
If a monotone sequence u
is such that u n / n
tends to a limit l
along subsequences with
exponential growth rate arbitrarily close to 1
, then u n / n
tends to l
.
theorem
tendsto_div_of_monotone_of_tendsto_div_floor_pow
(u : Nat → Real)
(l : Real)
(hmono : Monotone u)
(c : Nat → Real)
(cone : ∀ (k : Nat), LT.lt 1 (c k))
(clim : Filter.Tendsto c Filter.atTop (nhds 1))
(hc :
∀ (k : Nat),
Filter.Tendsto (fun (n : Nat) => HDiv.hDiv (u (Nat.floor (HPow.hPow (c k) n))) (Nat.floor (HPow.hPow (c k) n)).cast)
Filter.atTop (nhds l))
:
Filter.Tendsto (fun (n : Nat) => HDiv.hDiv (u n) n.cast) Filter.atTop (nhds l)
If a monotone sequence u
is such that u ⌊c^n⌋₊ / ⌊c^n⌋₊
converges to a limit l
for all
c > 1
, then u n / n
tends to l
. It is even enough to have the assumption for a sequence of
c
s converging to 1
.