Results on discretized exponentials #
We state several auxiliary results pertaining to sequences of the form ⌊c^n⌋₊.
- tendsto_div_of_monotone_of_tendsto_div_floor_pow: If a monotone sequence- uis such that- u ⌊c^n⌋₊ / ⌊c^n⌋₊converges to a limit- lfor all- c > 1, then- u n / ntends to- l.
- sum_div_nat_floor_pow_sq_le_div_sq: The sum of- 1/⌊c^i⌋₊^2above a threshold- jis comparable to- 1/j^2, up to a multiplicative constant.
theorem
tendsto_div_of_monotone_of_exists_subseq_tendsto_div
(u : ℕ → ℝ)
(l : ℝ)
(hmono : Monotone u)
(hlim :
  ∀ (a : ℝ),
    1 < a →
      ∃ (c : ℕ → ℕ),
        (∀ᶠ (n : ℕ) in Filter.atTop, ↑(c (n + 1)) ≤ a * ↑(c n)) ∧           Filter.Tendsto c Filter.atTop Filter.atTop ∧             Filter.Tendsto (fun (n : ℕ) => u (c n) / ↑(c n)) Filter.atTop (nhds l))
 :
Filter.Tendsto (fun (n : ℕ) => u n / ↑n) Filter.atTop (nhds l)
If a monotone sequence u is such that u n / n tends to a limit l along subsequences with
exponential growth rate arbitrarily close to 1, then u n / n tends to l.
theorem
tendsto_div_of_monotone_of_tendsto_div_floor_pow
(u : ℕ → ℝ)
(l : ℝ)
(hmono : Monotone u)
(c : ℕ → ℝ)
(cone : ∀ (k : ℕ), 1 < c k)
(clim : Filter.Tendsto c Filter.atTop (nhds 1))
(hc : ∀ (k : ℕ), Filter.Tendsto (fun (n : ℕ) => u ⌊c k ^ n⌋₊ / ↑⌊c k ^ n⌋₊) Filter.atTop (nhds l))
 :
Filter.Tendsto (fun (n : ℕ) => u n / ↑n) Filter.atTop (nhds l)
If a monotone sequence u is such that u ⌊c^n⌋₊ / ⌊c^n⌋₊ converges to a limit l for all
c > 1, then u n / n tends to l. It is even enough to have the assumption for a sequence of
cs converging to 1.