Localization of the center of a category #
Given a localization functor L : C ⥤ D
with respect to W : MorphismProperty C
,
we define a localization map CatCenter C → CatCenter D
for the centers
of these categories. In case L
is an additive functor between preadditive
categories, we promote this to a ring morphism CatCenter C →+* CatCenter D
.
noncomputable def
CategoryTheory.CatCenter.localization
{C : Type u₁}
[Category.{v₁, u₁} C]
{D : Type u₂}
[Category.{v₂, u₂} D]
(r : CatCenter C)
(L : Functor C D)
(W : MorphismProperty C)
[L.IsLocalization W]
:
Given r : CatCenter C
and L : C ⥤ D
a localization functor with respect
to W : MorphismProperty D
, this is the induced element in CatCenter D
obtained by localization.
Equations
- r.localization L W = CategoryTheory.Localization.liftNatTrans L W L L (CategoryTheory.Functor.id D) (CategoryTheory.Functor.id D) (CategoryTheory.whiskerRight r L)
Instances For
@[simp]
theorem
CategoryTheory.CatCenter.localization_app
{C : Type u₁}
[Category.{v₁, u₁} C]
{D : Type u₂}
[Category.{v₂, u₂} D]
(r : CatCenter C)
(L : Functor C D)
(W : MorphismProperty C)
[L.IsLocalization W]
(X : C)
:
theorem
CategoryTheory.CatCenter.ext_of_localization
{C : Type u₁}
[Category.{v₁, u₁} C]
{D : Type u₂}
[Category.{v₂, u₂} D]
(L : Functor C D)
(W : MorphismProperty C)
[L.IsLocalization W]
(r s : CatCenter D)
(h : ∀ (X : C), r.app (L.obj X) = s.app (L.obj X))
:
theorem
CategoryTheory.CatCenter.localization_one
{C : Type u₁}
[Category.{v₁, u₁} C]
{D : Type u₂}
[Category.{v₂, u₂} D]
(L : Functor C D)
(W : MorphismProperty C)
[L.IsLocalization W]
:
theorem
CategoryTheory.CatCenter.localization_mul
{C : Type u₁}
[Category.{v₁, u₁} C]
{D : Type u₂}
[Category.{v₂, u₂} D]
(r s : CatCenter C)
(L : Functor C D)
(W : MorphismProperty C)
[L.IsLocalization W]
:
theorem
CategoryTheory.CatCenter.localization_zero
{C : Type u₁}
[Category.{v₁, u₁} C]
{D : Type u₂}
[Category.{v₂, u₂} D]
(L : Functor C D)
(W : MorphismProperty C)
[L.IsLocalization W]
[Preadditive C]
[Preadditive D]
[L.Additive]
:
theorem
CategoryTheory.CatCenter.localization_add
{C : Type u₁}
[Category.{v₁, u₁} C]
{D : Type u₂}
[Category.{v₂, u₂} D]
(r s : CatCenter C)
(L : Functor C D)
(W : MorphismProperty C)
[L.IsLocalization W]
[Preadditive C]
[Preadditive D]
[L.Additive]
:
noncomputable def
CategoryTheory.CatCenter.localizationRingHom
{C : Type u₁}
[Category.{v₁, u₁} C]
{D : Type u₂}
[Category.{v₂, u₂} D]
(L : Functor C D)
(W : MorphismProperty C)
[L.IsLocalization W]
[Preadditive C]
[Preadditive D]
[L.Additive]
:
The morphism of rings CatCenter C →+* CatCenter D
when L : C ⥤ D
is an additive localization functor between preadditive categories.
Equations
- CategoryTheory.CatCenter.localizationRingHom L W = { toFun := fun (r : CategoryTheory.CatCenter C) => r.localization L W, map_one' := ⋯, map_mul' := ⋯, map_zero' := ⋯, map_add' := ⋯ }