Functors into a complete monoidal closed category form a monoidal closed category. #
TODO (in progress by Joël Riou): make a more explicit construction of the internal hom in functor categories.
instance
CategoryTheory.Functor.instReflectsIsomorphismsDiscreteObjWhiskeringLeftIncl
(I : Type u₂)
[CategoryTheory.Category.{v₂, u₂} I]
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
:
((CategoryTheory.whiskeringLeft (CategoryTheory.Discrete I) I C).obj
(CategoryTheory.Functor.incl✝ I)).ReflectsIsomorphisms
instance
CategoryTheory.Functor.instComonadicLeftAdjointDiscreteObjWhiskeringLeftIncl
(I : Type u₂)
[CategoryTheory.Category.{v₂, u₂} I]
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[∀ (F : CategoryTheory.Functor (CategoryTheory.Discrete I) C),
(CategoryTheory.Discrete.functor id).HasRightKanExtension F]
[CategoryTheory.Limits.HasLimitsOfShape CategoryTheory.Limits.WalkingParallelPair C]
:
Equations
- One or more equations did not get rendered due to their size.
instance
CategoryTheory.Functor.instIsLeftAdjointDiscreteTensorLeftCompIncl
(I : Type u₂)
[CategoryTheory.Category.{v₂, u₂} I]
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.MonoidalCategory C]
[CategoryTheory.MonoidalClosed C]
(F : CategoryTheory.Functor I C)
:
(CategoryTheory.MonoidalCategory.tensorLeft ((CategoryTheory.Functor.incl✝ I).comp F)).IsLeftAdjoint
def
CategoryTheory.Functor.functorCategoryClosed
(I : Type u₂)
[CategoryTheory.Category.{v₂, u₂} I]
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.MonoidalCategory C]
[CategoryTheory.MonoidalClosed C]
[∀ (F : CategoryTheory.Functor (CategoryTheory.Discrete I) C),
(CategoryTheory.Discrete.functor id).HasRightKanExtension F]
[CategoryTheory.Limits.HasLimitsOfShape CategoryTheory.Limits.WalkingParallelPair C]
(F : CategoryTheory.Functor I C)
:
Auxiliary definition for functorCategoryMonoidalClosed
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
CategoryTheory.Functor.functorCategoryMonoidalClosed
(I : Type u₂)
[CategoryTheory.Category.{v₂, u₂} I]
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.MonoidalCategory C]
[CategoryTheory.MonoidalClosed C]
[∀ (F : CategoryTheory.Functor (CategoryTheory.Discrete I) C),
(CategoryTheory.Discrete.functor id).HasRightKanExtension F]
[CategoryTheory.Limits.HasLimitsOfShape CategoryTheory.Limits.WalkingParallelPair C]
:
Assuming the existence of certain limits, functors into a monoidal closed category form a monoidal closed category.
Note: this is defined completely abstractly, and does not have any good definitional properties. See the TODO in the module docstring.
Equations
- CategoryTheory.Functor.functorCategoryMonoidalClosed I C = { closed := fun (F : CategoryTheory.Functor I C) => CategoryTheory.Functor.functorCategoryClosed I C F }