Documentation

Mathlib.CategoryTheory.Limits.Preserves.Shapes.Square

Preservations of pullback/pushout squares #

If a functor F : C ⥤ D preserves suitable cospans (resp. spans), and sq : Square C is a pullback square (resp. a pushout square) then so is the squaresq.map F.

The lemma Square.isPullback_iff_map_coyoneda_isPullback also shows that a square is a pullback square iff it is so after the application of the functor coyoneda.obj X for all X : Cᵒᵖ. Similarly, a square is a pushout square iff the opposite square becomes a pullback square after the application of the functor yoneda.obj X for all X : C.

theorem CategoryTheory.Square.isPullback_iff_map_coyoneda_isPullback {C : Type u} [CategoryTheory.Category.{v, u} C] (sq : CategoryTheory.Square C) :
sq.IsPullback ∀ (X : Cᵒᵖ), (sq.map (CategoryTheory.coyoneda.obj X)).IsPullback
theorem CategoryTheory.Square.isPushout_iff_op_map_yoneda_isPullback {C : Type u} [CategoryTheory.Category.{v, u} C] (sq : CategoryTheory.Square C) :
sq.IsPushout ∀ (X : C), (sq.op.map (CategoryTheory.yoneda.obj X)).IsPullback
theorem CategoryTheory.Square.IsPullback.iff_of_equiv (sq₁ : CategoryTheory.Square (Type v)) (sq₂ : CategoryTheory.Square (Type u)) (e₁ : sq₁.X₁ sq₂.X₁) (e₂ : sq₁.X₂ sq₂.X₂) (e₃ : sq₁.X₃ sq₂.X₃) (e₄ : sq₁.X₄ sq₂.X₄) (comm₁₂ : e₂ sq₁.f₁₂ = sq₂.f₁₂ e₁) (comm₁₃ : e₃ sq₁.f₁₃ = sq₂.f₁₃ e₁) (comm₂₄ : e₄ sq₁.f₂₄ = sq₂.f₂₄ e₂) (comm₃₄ : e₄ sq₁.f₃₄ = sq₂.f₃₄ e₃) :
sq₁.IsPullback sq₂.IsPullback
theorem CategoryTheory.Square.IsPullback.of_equiv {sq₁ : CategoryTheory.Square (Type v)} {sq₂ : CategoryTheory.Square (Type u)} (e₁ : sq₁.X₁ sq₂.X₁) (e₂ : sq₁.X₂ sq₂.X₂) (e₃ : sq₁.X₃ sq₂.X₃) (e₄ : sq₁.X₄ sq₂.X₄) (comm₁₂ : e₂ sq₁.f₁₂ = sq₂.f₁₂ e₁) (comm₁₃ : e₃ sq₁.f₁₃ = sq₂.f₁₃ e₁) (comm₂₄ : e₄ sq₁.f₂₄ = sq₂.f₂₄ e₂) (comm₃₄ : e₄ sq₁.f₃₄ = sq₂.f₃₄ e₃) (h₁ : sq₁.IsPullback) :
sq₂.IsPullback