Multicoequalizers that are pushouts #
In this file, we show that a multicoequalizer for
I : MultispanIndex (.ofLinearOrder ι) C
is also
a pushout when ι
has exactly two elements.
noncomputable def
CategoryTheory.Limits.Multicofork.IsColimit.isPushout.multicofork
{C : Type u_1}
[Category.{u_2, u_1} C]
{J : MultispanShape}
[Unique J.L]
{I : MultispanIndex J C}
(h : {J.fst default, J.snd default} = Set.univ)
(h' : J.fst default ≠ J.snd default)
(s : PushoutCocone (I.fst default) (I.snd default))
:
Given a multispan shape J
which is essentially .ofLinearOrder ι
(where ι
has exactly two elements), this is the multicofork
deduced from a pushout cocone.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Limits.Multicofork.IsColimit.isPushout.multicofork_π_eq_inl
{C : Type u_1}
[Category.{u_2, u_1} C]
{J : MultispanShape}
[Unique J.L]
{I : MultispanIndex J C}
(h : {J.fst default, J.snd default} = Set.univ)
(h' : J.fst default ≠ J.snd default)
(s : PushoutCocone (I.fst default) (I.snd default))
:
@[simp]
theorem
CategoryTheory.Limits.Multicofork.IsColimit.isPushout.multicofork_π_eq_inr
{C : Type u_1}
[Category.{u_2, u_1} C]
{J : MultispanShape}
[Unique J.L]
{I : MultispanIndex J C}
(h : {J.fst default, J.snd default} = Set.univ)
(h' : J.fst default ≠ J.snd default)
(s : PushoutCocone (I.fst default) (I.snd default))
:
theorem
CategoryTheory.Limits.Multicofork.IsColimit.isPushout
{C : Type u_1}
[Category.{u_4, u_1} C]
{J : MultispanShape}
[Unique J.L]
{I : MultispanIndex J C}
(c : Multicofork I)
(h : {J.fst default, J.snd default} = Set.univ)
(h' : J.fst default ≠ J.snd default)
(hc : IsColimit c)
:
A multicoequalizer for I : MultispanIndex J C
is also
a pushout when J
is essentially .ofLinearOrder ι
where
ι
contains exactly two elements.