Documentation

Mathlib.CategoryTheory.Localization.Monoidal.Braided

Localization of symmetric monoidal categories #

Let C be a monoidal category equipped with a class of morphisms W which is compatible with the monoidal category structure. The file Mathlib.CategoryTheory.Localization.Monoidal.Basic constructs a monoidal structure on the localized on D such that the localization functor is monoidal.

In this file we promote this monoidal structure to a braided structure in the case where C is braided, in such a way that the localization functor is braided. If C is symmetric monoidal, then the monoidal structure on D is also symmetric.

The braiding on the localized category as a natural isomorphism of bifunctors.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem CategoryTheory.Localization.Monoidal.map_hexagon_forward_assoc {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_3, u_2} D] (L : Functor C D) (W : MorphismProperty C) [MonoidalCategory C] [W.IsMonoidal] [L.IsLocalization W] {unit : D} (ε : L.obj (MonoidalCategoryStruct.tensorUnit C) unit) [BraidedCategory C] (X Y Z : C) {Z✝ : LocalizedMonoidal L W ε} (h : MonoidalCategoryStruct.tensorObj ((toMonoidalCategory L W ε).obj Y) (MonoidalCategoryStruct.tensorObj ((toMonoidalCategory L W ε).obj Z) ((toMonoidalCategory L W ε).obj X)) Z✝) :
    theorem CategoryTheory.Localization.Monoidal.map_hexagon_reverse_assoc {C : Type u_1} {D : Type u_2} [Category.{u_4, u_1} C] [Category.{u_3, u_2} D] (L : Functor C D) (W : MorphismProperty C) [MonoidalCategory C] [W.IsMonoidal] [L.IsLocalization W] {unit : D} (ε : L.obj (MonoidalCategoryStruct.tensorUnit C) unit) [BraidedCategory C] (X Y Z : C) {Z✝ : LocalizedMonoidal L W ε} (h : MonoidalCategoryStruct.tensorObj (MonoidalCategoryStruct.tensorObj ((toMonoidalCategory L W ε).obj Z) ((toMonoidalCategory L W ε).obj X)) ((toMonoidalCategory L W ε).obj Y) Z✝) :