Documentation

Mathlib.CategoryTheory.Monoidal.Cartesian.CommGrp_

Yoneda embedding of CommGrp C #

@[deprecated CategoryTheory.CommGrpObj (since := "2025-09-13")]

Alias of CategoryTheory.CommGrpObj.


Abbreviation for an unbundled commutative group object. It is a group object that is a commutative monoid object.

Equations
Instances For

    If X represents a presheaf of commutative groups, then X is a commutative group object.

    Equations
    Instances For
      @[deprecated CategoryTheory.CommGrpObj.ofRepresentableBy (since := "2025-09-13")]

      Alias of CategoryTheory.CommGrpObj.ofRepresentableBy.


      If X represents a presheaf of commutative groups, then X is a commutative group object.

      Equations
      Instances For

        The yoneda embedding of CommGrp C into presheaves of groups.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem CategoryTheory.yonedaCommGrpGrpObj_map {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] [BraidedCategory C] (G : CommGrp C) {H I : (Grp C)ᵒᵖ} (f : H I) :
          (yonedaCommGrpGrpObj G).map f = CommGrpCat.ofHom { toFun := fun (x : Opposite.unop H G.toGrp) => CategoryStruct.comp f.unop x, map_one' := , map_mul' := }

          The yoneda embedding of CommGrp C into presheaves of groups.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem CategoryTheory.yonedaCommGrpGrp_map_app {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] [BraidedCategory C] {X₁ X₂ : CommGrp C} (ψ : X₁ X₂) (Y : (Grp C)ᵒᵖ) :
            (yonedaCommGrpGrp.map ψ).app Y = CommGrpCat.ofHom { toFun := fun (x : Opposite.unop Y X₁.toGrp) => CategoryStruct.comp x ψ, map_one' := , map_mul' := }