Yoneda embedding of CommGrp C #
class
CategoryTheory.CommGrpObj
{C : Type u}
[Category.{v, u} C]
[CartesianMonoidalCategory C]
[BraidedCategory C]
(X : C)
extends CategoryTheory.GrpObj X, CategoryTheory.IsCommMonObj X :
Type v
Abbreviation for an unbundled commutative group object. It is a group object that is a commutative monoid object.
Instances
@[deprecated CategoryTheory.CommGrpObj (since := "2025-09-13")]
def
CategoryTheory.CommGrp_Class
{C : Type u}
[Category.{v, u} C]
[CartesianMonoidalCategory C]
[BraidedCategory C]
(X : C)
:
Type v
Alias of CategoryTheory.CommGrpObj.
Abbreviation for an unbundled commutative group object. It is a group object that is a commutative monoid object.
Instances For
def
CategoryTheory.CommGrpObj.ofRepresentableBy
{C : Type u}
[Category.{v, u} C]
[CartesianMonoidalCategory C]
[BraidedCategory C]
(X : C)
(F : Functor Cᵒᵖ CommGrpCat)
(α : (F.comp (forget CommGrpCat)).RepresentableBy X)
:
If X represents a presheaf of commutative groups, then X is a commutative group object.
Equations
- CategoryTheory.CommGrpObj.ofRepresentableBy X F α = { toGrpObj := CategoryTheory.GrpObj.ofRepresentableBy X (F.comp (CategoryTheory.forget₂ CommGrpCat GrpCat)) α, toIsCommMonObj := ⋯ }
Instances For
@[deprecated CategoryTheory.CommGrpObj.ofRepresentableBy (since := "2025-09-13")]
def
CategoryTheory.CommGrp_Class.ofRepresentableBy
{C : Type u}
[Category.{v, u} C]
[CartesianMonoidalCategory C]
[BraidedCategory C]
(X : C)
(F : Functor Cᵒᵖ CommGrpCat)
(α : (F.comp (forget CommGrpCat)).RepresentableBy X)
:
Alias of CategoryTheory.CommGrpObj.ofRepresentableBy.
If X represents a presheaf of commutative groups, then X is a commutative group object.
Equations
Instances For
def
CategoryTheory.yonedaCommGrpGrpObj
{C : Type u}
[Category.{v, u} C]
[CartesianMonoidalCategory C]
[BraidedCategory C]
(G : CommGrp C)
:
Functor (Grp C)ᵒᵖ CommGrpCat
The yoneda embedding of CommGrp C into presheaves of groups.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.yonedaCommGrpGrpObj_map
{C : Type u}
[Category.{v, u} C]
[CartesianMonoidalCategory C]
[BraidedCategory C]
(G : CommGrp C)
{H I : (Grp C)ᵒᵖ}
(f : H ⟶ I)
:
(yonedaCommGrpGrpObj G).map f = CommGrpCat.ofHom
{ toFun := fun (x : Opposite.unop H ⟶ G.toGrp) => CategoryStruct.comp f.unop x, map_one' := ⋯, map_mul' := ⋯ }
@[simp]
theorem
CategoryTheory.yonedaCommGrpGrpObj_obj_coe
{C : Type u}
[Category.{v, u} C]
[CartesianMonoidalCategory C]
[BraidedCategory C]
(G : CommGrp C)
(H : (Grp C)ᵒᵖ)
:
def
CategoryTheory.yonedaCommGrpGrp
{C : Type u}
[Category.{v, u} C]
[CartesianMonoidalCategory C]
[BraidedCategory C]
:
The yoneda embedding of CommGrp C into presheaves of groups.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.yonedaCommGrpGrp_map_app
{C : Type u}
[Category.{v, u} C]
[CartesianMonoidalCategory C]
[BraidedCategory C]
{X₁ X₂ : CommGrp C}
(ψ : X₁ ⟶ X₂)
(Y : (Grp C)ᵒᵖ)
:
(yonedaCommGrpGrp.map ψ).app Y = CommGrpCat.ofHom
{ toFun := fun (x : Opposite.unop Y ⟶ X₁.toGrp) => CategoryStruct.comp x ψ, map_one' := ⋯, map_mul' := ⋯ }
@[simp]
theorem
CategoryTheory.yonedaCommGrpGrp_obj
{C : Type u}
[Category.{v, u} C]
[CartesianMonoidalCategory C]
[BraidedCategory C]
(G : CommGrp C)
: