Yoneda embedding of CommGrp_ C
#
class
CommGrpObj
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.CartesianMonoidalCategory C]
[CategoryTheory.BraidedCategory C]
(X : C)
extends GrpObj X, IsCommMonObj X :
Type v
Abbreviation for an unbundled commutative group object. It is a group object that is a commutative monoid object.
- mul_assoc : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight mul X) mul = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.associator X X X).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft X mul) mul)
Instances
@[deprecated CommGrpObj (since := "2025-09-13")]
def
CommGrp_Class
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.CartesianMonoidalCategory C]
[CategoryTheory.BraidedCategory C]
(X : C)
:
Type v
Alias of CommGrpObj
.
Abbreviation for an unbundled commutative group object. It is a group object that is a commutative monoid object.
Equations
Instances For
def
CommGrpObj.ofRepresentableBy
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.CartesianMonoidalCategory C]
[CategoryTheory.BraidedCategory C]
(X : C)
(F : CategoryTheory.Functor Cᵒᵖ CommGrp)
(α : (F.comp (CategoryTheory.forget CommGrp)).RepresentableBy X)
:
If X
represents a presheaf of commutative groups, then X
is a commutative group object.
Equations
- CommGrpObj.ofRepresentableBy X F α = { toGrpObj := GrpObj.ofRepresentableBy X (F.comp (CategoryTheory.forget₂ CommGrp Grp)) α, toIsCommMonObj := ⋯ }
Instances For
@[deprecated CommGrpObj.ofRepresentableBy (since := "2025-09-13")]
def
CommGrp_Class.ofRepresentableBy
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.CartesianMonoidalCategory C]
[CategoryTheory.BraidedCategory C]
(X : C)
(F : CategoryTheory.Functor Cᵒᵖ CommGrp)
(α : (F.comp (CategoryTheory.forget CommGrp)).RepresentableBy X)
:
Alias of CommGrpObj.ofRepresentableBy
.
If X
represents a presheaf of commutative groups, then X
is a commutative group object.