Yoneda embedding of CommGrp C #
class
CategoryTheory.CommGrpObj
{C : Type u}
[Category.{v, u} C]
[CartesianMonoidalCategory C]
[BraidedCategory C]
(X : C)
extends CategoryTheory.GrpObj X, CategoryTheory.IsCommMonObj X :
Type v
Abbreviation for an unbundled commutative group object. It is a group object that is a commutative monoid object.
Instances
@[deprecated CategoryTheory.CommGrpObj (since := "2025-09-13")]
def
CategoryTheory.CommGrp_Class
{C : Type u}
[Category.{v, u} C]
[CartesianMonoidalCategory C]
[BraidedCategory C]
(X : C)
:
Type v
Alias of CategoryTheory.CommGrpObj.
Abbreviation for an unbundled commutative group object. It is a group object that is a commutative monoid object.
Instances For
def
CategoryTheory.CommGrpObj.ofRepresentableBy
{C : Type u}
[Category.{v, u} C]
[CartesianMonoidalCategory C]
[BraidedCategory C]
(X : C)
(F : Functor Cᵒᵖ CommGrpCat)
(α : (F.comp (forget CommGrpCat)).RepresentableBy X)
:
If X represents a presheaf of commutative groups, then X is a commutative group object.
Equations
- CategoryTheory.CommGrpObj.ofRepresentableBy X F α = { toGrpObj := CategoryTheory.GrpObj.ofRepresentableBy X (F.comp (CategoryTheory.forget₂ CommGrpCat GrpCat)) α, toIsCommMonObj := ⋯ }
Instances For
@[deprecated CategoryTheory.CommGrpObj.ofRepresentableBy (since := "2025-09-13")]
def
CategoryTheory.CommGrp_Class.ofRepresentableBy
{C : Type u}
[Category.{v, u} C]
[CartesianMonoidalCategory C]
[BraidedCategory C]
(X : C)
(F : Functor Cᵒᵖ CommGrpCat)
(α : (F.comp (forget CommGrpCat)).RepresentableBy X)
:
Alias of CategoryTheory.CommGrpObj.ofRepresentableBy.
If X represents a presheaf of commutative groups, then X is a commutative group object.