The category of groups in a cartesian monoidal category #
We define group objects in cartesian monoidal categories.
We show that the associativity diagram of a group object is always cartesian and deduce that morphisms of group objects commute with taking inverses.
We show that a finite-product-preserving functor takes group objects to group objects.
A group object in a cartesian monoidal category.
- X : C
- mul_assoc : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight self.mul self.X) self.mul = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.associator self.X self.X self.X).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft self.X self.mul) self.mul)
The inversion operation
- left_inv : CategoryTheory.CategoryStruct.comp (CategoryTheory.ChosenFiniteProducts.lift self.inv (CategoryTheory.CategoryStruct.id self.X)) self.mul = CategoryTheory.CategoryStruct.comp (CategoryTheory.ChosenFiniteProducts.toUnit self.X) self.one
- right_inv : CategoryTheory.CategoryStruct.comp (CategoryTheory.ChosenFiniteProducts.lift (CategoryTheory.CategoryStruct.id self.X) self.inv) self.mul = CategoryTheory.CategoryStruct.comp (CategoryTheory.ChosenFiniteProducts.toUnit self.X) self.one
Instances For
The trivial group object.
Equations
- Grp_.trivial C = { toMon_ := Mon_.trivial C, inv := CategoryTheory.CategoryStruct.id (Mon_.trivial C).X, left_inv := ⋯, right_inv := ⋯ }
Instances For
Equations
- Grp_.instInhabited C = { default := Grp_.trivial C }
The associativity diagram of a group object is cartesian.
In fact, any monoid object whose associativity diagram is cartesian can be made into a group object (we do not prove this in this file), so we should expect that many properties of group objects follow from this result.
Morphisms of group objects preserve inverses.
The forgetful functor from group objects to monoid objects.
Instances For
The forgetful functor from group objects to monoid objects is fully faithful.
Instances For
The forgetful functor from group objects to the ambient category.
Equations
- Grp_.forget C = (Grp_.forget₂Mon_ C).comp (Mon_.forget C)
Instances For
Constructor for isomorphisms in the category Grp_ C
.
Equations
- Grp_.mkIso f one_f mul_f = (Grp_.fullyFaithfulForget₂Mon_ C).preimageIso (Mon_.mkIso f one_f mul_f)
Instances For
Equations
A finite-product-preserving functor takes group objects to group objects.
Equations
- One or more equations did not get rendered due to their size.
Instances For
mapGrp
is functorial in the left-exact functor.
Equations
- One or more equations did not get rendered due to their size.