The category of commutative groups in a cartesian monoidal category #
structure
CommGrp_
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
extends Grp_ C, CommMon_ C :
Type (max u₁ v₁)
A commutative group object internal to a cartesian monoidal category.
- X : C
- mul_assoc : CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerRight self.mul self.X) self.mul = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.associator self.X self.X self.X).hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.whiskerLeft self.X self.mul) self.mul)
Instances For
@[simp]
theorem
CommGrp_.mul_comm_assoc
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
(self : CommGrp_ C)
{Z : C}
(h : self.X ⟶ Z)
:
CategoryTheory.CategoryStruct.comp (β_ self.X self.X).hom (CategoryTheory.CategoryStruct.comp self.mul h) = CategoryTheory.CategoryStruct.comp self.mul h
def
CommGrp_.trivial
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
:
CommGrp_ C
The trivial commutative group object.
Equations
- CommGrp_.trivial C = { toGrp_ := Grp_.trivial C, mul_comm := ⋯ }
Instances For
@[simp]
theorem
CommGrp_.trivial_X
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
:
@[simp]
theorem
CommGrp_.trivial_inv
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
:
@[simp]
theorem
CommGrp_.trivial_one
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
:
@[simp]
theorem
CommGrp_.trivial_mul
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
:
instance
CommGrp_.instInhabited
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
:
Equations
- CommGrp_.instInhabited C = { default := CommGrp_.trivial C }
@[simp]
theorem
CommGrp_.id_hom
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
(A : Grp_ C)
:
@[simp]
theorem
CommGrp_.comp_hom
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
{R S T : CommGrp_ C}
(f : R ⟶ S)
(g : S ⟶ T)
:
theorem
CommGrp_.hom_ext
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
{A B : CommGrp_ C}
(f g : A ⟶ B)
(h : f.hom = g.hom)
:
@[simp]
theorem
CommGrp_.id'
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
(A : CommGrp_ C)
:
@[simp]
theorem
CommGrp_.comp'
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
{A₁ A₂ A₃ : CommGrp_ C}
(f : A₁ ⟶ A₂)
(g : A₂ ⟶ A₃)
:
def
CommGrp_.forget₂Grp_
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
:
CategoryTheory.Functor (CommGrp_ C) (Grp_ C)
The forgetful functor from commutative group objects to group objects.
Instances For
def
CommGrp_.fullyFaithfulForget₂Grp_
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
:
The forgetful functor from commutative group objects to group objects is fully faithful.
Equations
Instances For
instance
CommGrp_.instFullGrp_Forget₂Grp_
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
:
(forget₂Grp_ C).Full
instance
CommGrp_.instFaithfulGrp_Forget₂Grp_
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
:
(forget₂Grp_ C).Faithful
@[simp]
theorem
CommGrp_.forget₂Grp_obj_one
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
(A : CommGrp_ C)
:
@[simp]
theorem
CommGrp_.forget₂Grp_obj_mul
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
(A : CommGrp_ C)
:
@[simp]
theorem
CommGrp_.forget₂Grp_map_hom
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
{A B : CommGrp_ C}
(f : A ⟶ B)
:
def
CommGrp_.forget₂CommMon_
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
:
CategoryTheory.Functor (CommGrp_ C) (CommMon_ C)
The forgetful functor from commutative group objects to commutative monoid objects.
Instances For
def
CommGrp_.fullyFaithfulForget₂CommMon_
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
:
The forgetful functor from commutative group objects to commutative monoid objects is fully faithful.
Equations
Instances For
instance
CommGrp_.instFullCommMon_Forget₂CommMon_
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
:
(forget₂CommMon_ C).Full
instance
CommGrp_.instFaithfulCommMon_Forget₂CommMon_
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
:
@[simp]
theorem
CommGrp_.forget₂CommMon_obj_one
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
(A : CommGrp_ C)
:
@[simp]
theorem
CommGrp_.forget₂CommMon_obj_mul
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
(A : CommGrp_ C)
:
@[simp]
theorem
CommGrp_.forget₂CommMon_map_hom
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
{A B : CommGrp_ C}
(f : A ⟶ B)
:
def
CommGrp_.forget
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
:
The forgetful functor from commutative group objects to the ambient category.
Equations
- CommGrp_.forget C = (CommGrp_.forget₂Grp_ C).comp (Grp_.forget C)
Instances For
@[simp]
theorem
CommGrp_.forget_map
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
{X✝ Y✝ : CommGrp_ C}
(f : X✝ ⟶ Y✝)
:
@[simp]
theorem
CommGrp_.forget_obj
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
(X : CommGrp_ C)
:
instance
CommGrp_.instFaithfulForget
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
:
@[simp]
theorem
CommGrp_.forget₂Grp_comp_forget
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
:
@[simp]
theorem
CommGrp_.forget₂CommMon_comp_forget
(C : Type u₁)
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
:
def
CommGrp_.mkIso
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
{M N : CommGrp_ C}
(f : M.X ≅ N.X)
(one_f : CategoryTheory.CategoryStruct.comp M.one f.hom = N.one := by aesop_cat)
(mul_f :
CategoryTheory.CategoryStruct.comp M.mul f.hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.tensorHom f.hom f.hom) N.mul := by
aesop_cat)
:
Constructor for isomorphisms in the category Grp_ C
.
Equations
- CommGrp_.mkIso f one_f mul_f = (CommGrp_.fullyFaithfulForget₂Grp_ C).preimageIso (Grp_.mkIso f one_f mul_f)
Instances For
@[simp]
theorem
CommGrp_.mkIso_hom_hom
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
{M N : CommGrp_ C}
(f : M.X ≅ N.X)
(one_f : CategoryTheory.CategoryStruct.comp M.one f.hom = N.one := by aesop_cat)
(mul_f :
CategoryTheory.CategoryStruct.comp M.mul f.hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.tensorHom f.hom f.hom) N.mul := by
aesop_cat)
:
@[simp]
theorem
CommGrp_.mkIso_inv_hom
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
{M N : CommGrp_ C}
(f : M.X ≅ N.X)
(one_f : CategoryTheory.CategoryStruct.comp M.one f.hom = N.one := by aesop_cat)
(mul_f :
CategoryTheory.CategoryStruct.comp M.mul f.hom = CategoryTheory.CategoryStruct.comp (CategoryTheory.MonoidalCategoryStruct.tensorHom f.hom f.hom) N.mul := by
aesop_cat)
:
instance
CommGrp_.uniqueHomFromTrivial
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
(A : CommGrp_ C)
:
Equations
instance
CommGrp_.instHasInitial
{C : Type u₁}
[CategoryTheory.Category.{v₁, u₁} C]
[CategoryTheory.ChosenFiniteProducts C]
:
noncomputable def
CategoryTheory.Functor.mapCommGrp
{C : Type u₁}
[Category.{v₁, u₁} C]
[ChosenFiniteProducts C]
{D : Type u₂}
[Category.{v₂, u₂} D]
[ChosenFiniteProducts D]
(F : Functor C D)
[Limits.PreservesFiniteProducts F]
:
A finite-product-preserving functor takes commutative group objects to commutative group objects.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Functor.mapCommGrp_obj_one
{C : Type u₁}
[Category.{v₁, u₁} C]
[ChosenFiniteProducts C]
{D : Type u₂}
[Category.{v₂, u₂} D]
[ChosenFiniteProducts D]
(F : Functor C D)
[Limits.PreservesFiniteProducts F]
(A : CommGrp_ C)
:
@[simp]
theorem
CategoryTheory.Functor.mapCommGrp_obj_X
{C : Type u₁}
[Category.{v₁, u₁} C]
[ChosenFiniteProducts C]
{D : Type u₂}
[Category.{v₂, u₂} D]
[ChosenFiniteProducts D]
(F : Functor C D)
[Limits.PreservesFiniteProducts F]
(A : CommGrp_ C)
:
@[simp]
theorem
CategoryTheory.Functor.mapCommGrp_obj_mul
{C : Type u₁}
[Category.{v₁, u₁} C]
[ChosenFiniteProducts C]
{D : Type u₂}
[Category.{v₂, u₂} D]
[ChosenFiniteProducts D]
(F : Functor C D)
[Limits.PreservesFiniteProducts F]
(A : CommGrp_ C)
:
@[simp]
theorem
CategoryTheory.Functor.mapCommGrp_map_hom
{C : Type u₁}
[Category.{v₁, u₁} C]
[ChosenFiniteProducts C]
{D : Type u₂}
[Category.{v₂, u₂} D]
[ChosenFiniteProducts D]
(F : Functor C D)
[Limits.PreservesFiniteProducts F]
{X✝ Y✝ : CommGrp_ C}
(f : X✝ ⟶ Y✝)
:
@[simp]
theorem
CategoryTheory.Functor.mapCommGrp_obj_inv
{C : Type u₁}
[Category.{v₁, u₁} C]
[ChosenFiniteProducts C]
{D : Type u₂}
[Category.{v₂, u₂} D]
[ChosenFiniteProducts D]
(F : Functor C D)
[Limits.PreservesFiniteProducts F]
(A : CommGrp_ C)
:
noncomputable def
CategoryTheory.Functor.mapCommGrpFunctor
{C : Type u₁}
[Category.{v₁, u₁} C]
[ChosenFiniteProducts C]
{D : Type u₂}
[Category.{v₂, u₂} D]
[ChosenFiniteProducts D]
:
mapGrp
is functorial in the left-exact functor.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Functor.mapCommGrpFunctor_obj
{C : Type u₁}
[Category.{v₁, u₁} C]
[ChosenFiniteProducts C]
{D : Type u₂}
[Category.{v₂, u₂} D]
[ChosenFiniteProducts D]
(F : C ⥤ₗ D)
:
@[simp]
theorem
CategoryTheory.Functor.mapCommGrpFunctor_map_app_hom
{C : Type u₁}
[Category.{v₁, u₁} C]
[ChosenFiniteProducts C]
{D : Type u₂}
[Category.{v₂, u₂} D]
[ChosenFiniteProducts D]
{F G : C ⥤ₗ D}
(α : F ⟶ G)
(A : CommGrp_ C)
: