Documentation

Mathlib.CategoryTheory.Monoidal.Cartesian.Grp_

Yoneda embedding of Grp C #

We show that group objects are exactly those whose yoneda presheaf is a presheaf of groups, by constructing the yoneda embedding Grp C ⥤ Cᵒᵖ ⥤ GrpCat.{v} and showing that it is fully faithful and its (essential) image is the representable functors.

If X represents a presheaf of monoids, then X is a monoid object.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[deprecated CategoryTheory.GrpObj.ofRepresentableBy (since := "2025-09-13")]

    Alias of CategoryTheory.GrpObj.ofRepresentableBy.


    If X represents a presheaf of monoids, then X is a monoid object.

    Equations
    Instances For
      @[reducible, inline]

      If G is a group object, then Hom(X, G) has a group structure.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        If G is a group object, then Hom(-, G) is a presheaf of groups.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem CategoryTheory.yonedaGrpObj_map {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] (G : C) [GrpObj G] {X✝ Y✝ : Cᵒᵖ} (φ : X✝ Y✝) :
          @[deprecated CategoryTheory.GrpObj.ofRepresentableBy_yonedaGrpObjRepresentableBy (since := "2025-09-13")]

          Alias of CategoryTheory.GrpObj.ofRepresentableBy_yonedaGrpObjRepresentableBy.

          If X represents a presheaf of groups F, then Hom(-, X) is isomorphic to F as a presheaf of groups.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            @[simp]
            theorem CategoryTheory.yonedaGrpObjIsoOfRepresentableBy_inv {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] (X : C) (F : Functor Cᵒᵖ GrpCat) (α : (F.comp (forget GrpCat)).RepresentableBy X) :
            (yonedaGrpObjIsoOfRepresentableBy X F α).inv = { app := fun (X_1 : Cᵒᵖ) => GrpCat.ofHom { toEquiv := α.homEquiv.symm, map_mul' := }, naturality := }
            @[simp]
            theorem CategoryTheory.yonedaGrpObjIsoOfRepresentableBy_hom {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] (X : C) (F : Functor Cᵒᵖ GrpCat) (α : (F.comp (forget GrpCat)).RepresentableBy X) :
            (yonedaGrpObjIsoOfRepresentableBy X F α).hom = { app := fun (X_1 : Cᵒᵖ) => GrpCat.ofHom { toEquiv := α.homEquiv, map_mul' := }, naturality := }

            The yoneda embedding of Grp_C into presheaves of groups.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              The yoneda embedding for Grp_C is fully faithful.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[deprecated CategoryTheory.GrpObj.inv_comp (since := "2025-09-13")]

                Alias of CategoryTheory.GrpObj.inv_comp.

                @[deprecated CategoryTheory.GrpObj.div_comp (since := "2025-09-13")]

                Alias of CategoryTheory.GrpObj.div_comp.

                theorem CategoryTheory.GrpObj.zpow_comp {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] {G H X : C} [GrpObj G] [GrpObj H] (f : X G) (n : ) (g : G H) [IsMonHom g] :
                theorem CategoryTheory.GrpObj.zpow_comp_assoc {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] {G H X : C} [GrpObj G] [GrpObj H] (f : X G) (n : ) (g : G H) [IsMonHom g] {Z : C} (h : H Z) :
                @[deprecated CategoryTheory.GrpObj.zpow_comp (since := "2025-09-13")]
                theorem CategoryTheory.Grp_Class.zpow_comp {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] {G H X : C} [GrpObj G] [GrpObj H] (f : X G) (n : ) (g : G H) [IsMonHom g] :

                Alias of CategoryTheory.GrpObj.zpow_comp.

                @[deprecated CategoryTheory.GrpObj.comp_inv (since := "2025-09-13")]

                Alias of CategoryTheory.GrpObj.comp_inv.

                @[deprecated CategoryTheory.GrpObj.comp_div (since := "2025-09-13")]

                Alias of CategoryTheory.GrpObj.comp_div.

                theorem CategoryTheory.GrpObj.comp_zpow {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] {G X Y : C} [GrpObj G] (f : X Y) (g : Y G) (n : ) :
                @[deprecated CategoryTheory.GrpObj.comp_zpow (since := "2025-09-13")]
                theorem CategoryTheory.Grp_Class.comp_zpow {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] {G X Y : C} [GrpObj G] (f : X Y) (g : Y G) (n : ) :

                Alias of CategoryTheory.GrpObj.comp_zpow.

                @[deprecated CategoryTheory.GrpObj.inv_eq_inv (since := "2025-09-13")]

                Alias of CategoryTheory.GrpObj.inv_eq_inv.

                Equations
                • One or more equations did not get rendered due to their size.
                @[simp]
                @[simp]
                theorem CategoryTheory.Grp.Hom.hom_pow {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] [BraidedCategory C] {G H : Grp C} [IsCommMonObj H.X] (f : G H) (n : ) :
                (f ^ n).hom = f.hom ^ n

                A commutative group object is a group object in the category of group objects.

                Equations
                • One or more equations did not get rendered due to their size.
                @[simp]
                @[deprecated CategoryTheory.Grp.Hom.hom_hom_inv (since := "2025-12-18")]

                Alias of CategoryTheory.Grp.Hom.hom_hom_inv.

                @[deprecated CategoryTheory.Grp.Hom.hom_hom_div (since := "2025-12-18")]

                Alias of CategoryTheory.Grp.Hom.hom_hom_div.

                @[deprecated CategoryTheory.Grp.Hom.hom_hom_zpow (since := "2025-12-18")]
                theorem CategoryTheory.Grp.Hom.hom_zpow {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] [BraidedCategory C] {G H : Grp C} [IsCommMonObj H.X] (f : G H) (n : ) :
                (f ^ n).hom.hom = f.hom.hom ^ n

                Alias of CategoryTheory.Grp.Hom.hom_hom_zpow.

                A commutative group object is a commutative group object in the category of group objects.

                @[reducible, inline]

                If G is a commutative group object, then Hom(X, G) has a commutative group structure.

                Equations
                Instances For