Documentation

Mathlib.CategoryTheory.Monoidal.Cartesian.Grp_

Yoneda embedding of Grp C #

We show that group objects are exactly those whose yoneda presheaf is a presheaf of groups, by constructing the yoneda embedding Grp C ⥤ Cᵒᵖ ⥤ GrpCat.{v} and showing that it is fully faithful and its (essential) image is the representable functors.

def CategoryTheory.Grp.homMk {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] {G H : C} [GrpObj G] [GrpObj H] (f : G H) [IsMonHom f] :
{ X := G, grp := inst✝ } { X := H, grp := inst✝¹ }

Construct a morphism G ⟶ H of Grp C C from a map f : G ⟶ H and a IsMonHom f instance.

Equations
Instances For
    @[simp]
    theorem CategoryTheory.Grp.homMk_hom {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] {G H : C} [GrpObj G] [GrpObj H] (f : G H) [IsMonHom f] :
    (homMk f).hom = f
    @[deprecated CategoryTheory.Grp.homMk (since := "2025-10-13")]
    def CategoryTheory.Grp_.homMk {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] {G H : C} [GrpObj G] [GrpObj H] (f : G H) [IsMonHom f] :
    { X := G, grp := inst✝ } { X := H, grp := inst✝¹ }

    Alias of CategoryTheory.Grp.homMk.


    Construct a morphism G ⟶ H of Grp C C from a map f : G ⟶ H and a IsMonHom f instance.

    Equations
    Instances For
      @[simp]
      @[deprecated CategoryTheory.Grp.homMk_hom' (since := "2025-10-13")]

      Alias of CategoryTheory.Grp.homMk_hom'.

      If X represents a presheaf of monoids, then X is a monoid object.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        @[deprecated CategoryTheory.GrpObj.ofRepresentableBy (since := "2025-09-13")]

        Alias of CategoryTheory.GrpObj.ofRepresentableBy.


        If X represents a presheaf of monoids, then X is a monoid object.

        Equations
        Instances For
          @[reducible, inline]

          If G is a group object, then Hom(X, G) has a group structure.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            If G is a group object, then Hom(-, G) is a presheaf of groups.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem CategoryTheory.yonedaGrpObj_map {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] (G : C) [GrpObj G] {X✝ Y✝ : Cᵒᵖ} (φ : X✝ Y✝) :
              @[deprecated CategoryTheory.GrpObj.ofRepresentableBy_yonedaGrpObjRepresentableBy (since := "2025-09-13")]

              Alias of CategoryTheory.GrpObj.ofRepresentableBy_yonedaGrpObjRepresentableBy.

              If X represents a presheaf of groups F, then Hom(-, X) is isomorphic to F as a presheaf of groups.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[simp]
                theorem CategoryTheory.yonedaGrpObjIsoOfRepresentableBy_inv {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] (X : C) (F : Functor Cᵒᵖ GrpCat) (α : (F.comp (forget GrpCat)).RepresentableBy X) :
                (yonedaGrpObjIsoOfRepresentableBy X F α).inv = { app := fun (X_1 : Cᵒᵖ) => GrpCat.ofHom { toEquiv := α.homEquiv.symm, map_mul' := }, naturality := }
                @[simp]
                theorem CategoryTheory.yonedaGrpObjIsoOfRepresentableBy_hom {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] (X : C) (F : Functor Cᵒᵖ GrpCat) (α : (F.comp (forget GrpCat)).RepresentableBy X) :
                (yonedaGrpObjIsoOfRepresentableBy X F α).hom = { app := fun (X_1 : Cᵒᵖ) => GrpCat.ofHom { toEquiv := α.homEquiv, map_mul' := }, naturality := }

                The yoneda embedding of Grp_C into presheaves of groups.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  The yoneda embedding for Grp_C is fully faithful.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    @[deprecated CategoryTheory.GrpObj.inv_comp (since := "2025-09-13")]

                    Alias of CategoryTheory.GrpObj.inv_comp.

                    @[deprecated CategoryTheory.GrpObj.div_comp (since := "2025-09-13")]

                    Alias of CategoryTheory.GrpObj.div_comp.

                    theorem CategoryTheory.GrpObj.zpow_comp {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] {G H X : C} [GrpObj G] [GrpObj H] (f : X G) (n : ) (g : G H) [IsMonHom g] :
                    theorem CategoryTheory.GrpObj.zpow_comp_assoc {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] {G H X : C} [GrpObj G] [GrpObj H] (f : X G) (n : ) (g : G H) [IsMonHom g] {Z : C} (h : H Z) :
                    @[deprecated CategoryTheory.GrpObj.zpow_comp (since := "2025-09-13")]
                    theorem CategoryTheory.Grp_Class.zpow_comp {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] {G H X : C} [GrpObj G] [GrpObj H] (f : X G) (n : ) (g : G H) [IsMonHom g] :

                    Alias of CategoryTheory.GrpObj.zpow_comp.

                    @[deprecated CategoryTheory.GrpObj.comp_inv (since := "2025-09-13")]

                    Alias of CategoryTheory.GrpObj.comp_inv.

                    @[deprecated CategoryTheory.GrpObj.comp_div (since := "2025-09-13")]

                    Alias of CategoryTheory.GrpObj.comp_div.

                    theorem CategoryTheory.GrpObj.comp_zpow {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] {G X Y : C} [GrpObj G] (f : X Y) (g : Y G) (n : ) :
                    @[deprecated CategoryTheory.GrpObj.comp_zpow (since := "2025-09-13")]
                    theorem CategoryTheory.Grp_Class.comp_zpow {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] {G X Y : C} [GrpObj G] (f : X Y) (g : Y G) (n : ) :

                    Alias of CategoryTheory.GrpObj.comp_zpow.

                    @[deprecated CategoryTheory.GrpObj.inv_eq_inv (since := "2025-09-13")]

                    Alias of CategoryTheory.GrpObj.inv_eq_inv.

                    @[simp]
                    @[simp]
                    theorem CategoryTheory.Grp.Hom.hom_pow {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] [BraidedCategory C] {G H : Grp C} [IsCommMonObj H.X] (f : G H) (n : ) :
                    (f ^ n).hom = f.hom ^ n

                    A commutative group object is a group object in the category of group objects.

                    Equations
                    @[simp]
                    @[simp]
                    theorem CategoryTheory.Grp.Hom.hom_zpow {C : Type u} [Category.{v, u} C] [CartesianMonoidalCategory C] [BraidedCategory C] {G H : Grp C} [IsCommMonObj H.X] (f : G H) (n : ) :
                    (f ^ n).hom = f.hom ^ n

                    A commutative group object is a commutative group object in the category of group objects.

                    @[reducible, inline]

                    If G is a commutative group object, then Hom(X, G) has a commutative group structure.

                    Equations
                    Instances For