In this file, we prove that sheafification is compatible with functors which preserve the correct limits and colimits.
noncomputable def
CategoryTheory.GrothendieckTopology.sheafifyCompIso
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
(F : CategoryTheory.Functor D E)
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ E]
[∀ (X : C), CategoryTheory.Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ F]
[∀ (X : C) (W : J.Cover X) (P : CategoryTheory.Functor Cᵒᵖ D),
CategoryTheory.Limits.PreservesLimit (W.index P).multicospan F]
(P : CategoryTheory.Functor Cᵒᵖ D)
:
(J.sheafify P).comp F ≅ J.sheafify (P.comp F)
The isomorphism between the sheafification of P
composed with F
and
the sheafification of P ⋙ F
.
Use the lemmas whisker_right_to_sheafify_sheafify_comp_iso_hom
,
to_sheafify_comp_sheafify_comp_iso_inv
and sheafify_comp_iso_inv_eq_sheafify_lift
to reduce
the components of this isomorphisms to a state that can be handled using the universal property
of sheafification.
Equations
Instances For
noncomputable def
CategoryTheory.GrothendieckTopology.sheafificationWhiskerLeftIso
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ E]
(P : CategoryTheory.Functor Cᵒᵖ D)
[∀ (F : CategoryTheory.Functor D E) (X : C), CategoryTheory.Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ F]
[∀ (F : CategoryTheory.Functor D E) (X : C) (W : J.Cover X) (P : CategoryTheory.Functor Cᵒᵖ D),
CategoryTheory.Limits.PreservesLimit (W.index P).multicospan F]
:
(CategoryTheory.whiskeringLeft Cᵒᵖ D E).obj (J.sheafify P) ≅ ((CategoryTheory.whiskeringLeft Cᵒᵖ D E).obj P).comp (J.sheafification E)
The isomorphism between the sheafification of P
composed with F
and
the sheafification of P ⋙ F
, functorially in F
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.GrothendieckTopology.sheafificationWhiskerLeftIso_hom_app
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ E]
(P : CategoryTheory.Functor Cᵒᵖ D)
(F : CategoryTheory.Functor D E)
[∀ (F : CategoryTheory.Functor D E) (X : C), CategoryTheory.Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ F]
[∀ (F : CategoryTheory.Functor D E) (X : C) (W : J.Cover X) (P : CategoryTheory.Functor Cᵒᵖ D),
CategoryTheory.Limits.PreservesLimit (W.index P).multicospan F]
:
(J.sheafificationWhiskerLeftIso P).hom.app F = (J.sheafifyCompIso F P).hom
@[simp]
theorem
CategoryTheory.GrothendieckTopology.sheafificationWhiskerLeftIso_inv_app
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ E]
(P : CategoryTheory.Functor Cᵒᵖ D)
(F : CategoryTheory.Functor D E)
[∀ (F : CategoryTheory.Functor D E) (X : C), CategoryTheory.Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ F]
[∀ (F : CategoryTheory.Functor D E) (X : C) (W : J.Cover X) (P : CategoryTheory.Functor Cᵒᵖ D),
CategoryTheory.Limits.PreservesLimit (W.index P).multicospan F]
:
(J.sheafificationWhiskerLeftIso P).inv.app F = (J.sheafifyCompIso F P).inv
noncomputable def
CategoryTheory.GrothendieckTopology.sheafificationWhiskerRightIso
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
(F : CategoryTheory.Functor D E)
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ E]
[∀ (X : C), CategoryTheory.Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ F]
[∀ (X : C) (W : J.Cover X) (P : CategoryTheory.Functor Cᵒᵖ D),
CategoryTheory.Limits.PreservesLimit (W.index P).multicospan F]
:
(J.sheafification D).comp ((CategoryTheory.whiskeringRight Cᵒᵖ D E).obj F) ≅ ((CategoryTheory.whiskeringRight Cᵒᵖ D E).obj F).comp (J.sheafification E)
The isomorphism between the sheafification of P
composed with F
and
the sheafification of P ⋙ F
, functorially in P
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.GrothendieckTopology.sheafificationWhiskerRightIso_hom_app
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
(F : CategoryTheory.Functor D E)
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ E]
[∀ (X : C), CategoryTheory.Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ F]
[∀ (X : C) (W : J.Cover X) (P : CategoryTheory.Functor Cᵒᵖ D),
CategoryTheory.Limits.PreservesLimit (W.index P).multicospan F]
(P : CategoryTheory.Functor Cᵒᵖ D)
:
(J.sheafificationWhiskerRightIso F).hom.app P = (J.sheafifyCompIso F P).hom
@[simp]
theorem
CategoryTheory.GrothendieckTopology.sheafificationWhiskerRightIso_inv_app
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
(F : CategoryTheory.Functor D E)
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ E]
[∀ (X : C), CategoryTheory.Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ F]
[∀ (X : C) (W : J.Cover X) (P : CategoryTheory.Functor Cᵒᵖ D),
CategoryTheory.Limits.PreservesLimit (W.index P).multicospan F]
(P : CategoryTheory.Functor Cᵒᵖ D)
:
(J.sheafificationWhiskerRightIso F).inv.app P = (J.sheafifyCompIso F P).inv
@[simp]
theorem
CategoryTheory.GrothendieckTopology.whiskerRight_toSheafify_sheafifyCompIso_hom
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
(F : CategoryTheory.Functor D E)
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ E]
[∀ (X : C), CategoryTheory.Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ F]
[∀ (X : C) (W : J.Cover X) (P : CategoryTheory.Functor Cᵒᵖ D),
CategoryTheory.Limits.PreservesLimit (W.index P).multicospan F]
(P : CategoryTheory.Functor Cᵒᵖ D)
:
CategoryTheory.CategoryStruct.comp (CategoryTheory.whiskerRight (J.toSheafify P) F) (J.sheafifyCompIso F P).hom = J.toSheafify (P.comp F)
theorem
CategoryTheory.GrothendieckTopology.whiskerRight_toSheafify_sheafifyCompIso_hom_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
(F : CategoryTheory.Functor D E)
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ E]
[∀ (X : C), CategoryTheory.Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ F]
[∀ (X : C) (W : J.Cover X) (P : CategoryTheory.Functor Cᵒᵖ D),
CategoryTheory.Limits.PreservesLimit (W.index P).multicospan F]
(P : CategoryTheory.Functor Cᵒᵖ D)
{Z : CategoryTheory.Functor Cᵒᵖ E}
(h : J.sheafify (P.comp F) ⟶ Z)
:
CategoryTheory.CategoryStruct.comp (CategoryTheory.whiskerRight (J.toSheafify P) F)
(CategoryTheory.CategoryStruct.comp (J.sheafifyCompIso F P).hom h) = CategoryTheory.CategoryStruct.comp (J.toSheafify (P.comp F)) h
@[simp]
theorem
CategoryTheory.GrothendieckTopology.toSheafify_comp_sheafifyCompIso_inv
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
(F : CategoryTheory.Functor D E)
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ E]
[∀ (X : C), CategoryTheory.Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ F]
[∀ (X : C) (W : J.Cover X) (P : CategoryTheory.Functor Cᵒᵖ D),
CategoryTheory.Limits.PreservesLimit (W.index P).multicospan F]
(P : CategoryTheory.Functor Cᵒᵖ D)
:
CategoryTheory.CategoryStruct.comp (J.toSheafify (P.comp F)) (J.sheafifyCompIso F P).inv = CategoryTheory.whiskerRight (J.toSheafify P) F
theorem
CategoryTheory.GrothendieckTopology.toSheafify_comp_sheafifyCompIso_inv_assoc
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
(F : CategoryTheory.Functor D E)
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ E]
[∀ (X : C), CategoryTheory.Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ F]
[∀ (X : C) (W : J.Cover X) (P : CategoryTheory.Functor Cᵒᵖ D),
CategoryTheory.Limits.PreservesLimit (W.index P).multicospan F]
(P : CategoryTheory.Functor Cᵒᵖ D)
{Z : CategoryTheory.Functor Cᵒᵖ E}
(h : (J.sheafify P).comp F ⟶ Z)
:
CategoryTheory.CategoryStruct.comp (J.toSheafify (P.comp F))
(CategoryTheory.CategoryStruct.comp (J.sheafifyCompIso F P).inv h) = CategoryTheory.CategoryStruct.comp (CategoryTheory.whiskerRight (J.toSheafify P) F) h
@[simp]
theorem
CategoryTheory.GrothendieckTopology.sheafifyCompIso_inv_eq_sheafifyLift
{C : Type u}
[CategoryTheory.Category.{v, u} C]
(J : CategoryTheory.GrothendieckTopology C)
{D : Type w₁}
[CategoryTheory.Category.{max v u, w₁} D]
{E : Type w₂}
[CategoryTheory.Category.{max v u, w₂} E]
(F : CategoryTheory.Functor D E)
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) D]
[∀ (α β : Type (max v u)) (fst snd : β → α),
CategoryTheory.Limits.HasLimitsOfShape (CategoryTheory.Limits.WalkingMulticospan fst snd) E]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D]
[∀ (X : C), CategoryTheory.Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ E]
[∀ (X : C), CategoryTheory.Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ F]
[∀ (X : C) (W : J.Cover X) (P : CategoryTheory.Functor Cᵒᵖ D),
CategoryTheory.Limits.PreservesLimit (W.index P).multicospan F]
(P : CategoryTheory.Functor Cᵒᵖ D)
[CategoryTheory.ConcreteCategory D]
[CategoryTheory.Limits.PreservesLimits (CategoryTheory.forget D)]
[∀ (X : C), CategoryTheory.Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ (CategoryTheory.forget D)]
[(CategoryTheory.forget D).ReflectsIsomorphisms]
:
(J.sheafifyCompIso F P).inv = J.sheafifyLift (CategoryTheory.whiskerRight (J.toSheafify P) F) ⋯