Documentation

Mathlib.CategoryTheory.Sites.LeftExact

Left exactness of sheafification #

In this file we show that sheafification commutes with finite limits.

An auxiliary definition to be used in the proof of the fact that J.diagramFunctor D X preserves limits.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    Auxiliary definition for liftToDiagramLimitObj.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[reducible, inline]
      abbrev CategoryTheory.GrothendieckTopology.liftToDiagramLimitObj {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {D : Type w} [Category.{max v u, w} D] [∀ (P : Functor Cᵒᵖ D) (X : C) (S : J.Cover X), Limits.HasMultiequalizer (S.index P)] {X : C} {K : Type (max v u)} [SmallCategory K] [Limits.HasLimitsOfShape K D] {W : (J.Cover X)ᵒᵖ} (F : Functor K (Functor Cᵒᵖ D)) (E : Limits.Cone (F.comp ((J.diagramFunctor D X).comp ((evaluation (J.Cover X)ᵒᵖ D).obj W)))) :
      E.pt (J.diagram (Limits.limit F) X).obj W

      An auxiliary definition to be used in the proof of the fact that J.diagramFunctor D X preserves limits.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        An auxiliary definition to be used in the proof that J.plusFunctor D commutes with finite limits.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          instance CategoryTheory.preservesLimitsOfShape_presheafToSheaf {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {D : Type w} [Category.{max v u, w} D] [∀ (P : Functor Cᵒᵖ D) (X : C) (S : J.Cover X), Limits.HasMultiequalizer (S.index P)] [∀ (X : C), Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D] {FD : DDType u_1} {CD : DType (max v u)} [(X Y : D) → FunLike (FD X Y) (CD X) (CD Y)] [ConcreteCategory D FD] [∀ (X : C), Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ (forget D)] [Limits.PreservesLimits (forget D)] [(forget D).ReflectsIsomorphisms] (K : Type w') [SmallCategory K] [FinCategory K] [Limits.HasLimitsOfShape K D] :
          instance CategoryTheory.preservesfiniteLimits_presheafToSheaf {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {D : Type w} [Category.{max v u, w} D] [∀ (P : Functor Cᵒᵖ D) (X : C) (S : J.Cover X), Limits.HasMultiequalizer (S.index P)] [∀ (X : C), Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D] {FD : DDType u_1} {CD : DType (max v u)} [(X Y : D) → FunLike (FD X Y) (CD X) (CD Y)] [ConcreteCategory D FD] [∀ (X : C), Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ (forget D)] [Limits.PreservesLimits (forget D)] [(forget D).ReflectsIsomorphisms] [Limits.HasFiniteLimits D] :
          def CategoryTheory.plusPlusSheafIsoPresheafToSheaf {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) (D : Type w) [Category.{max v u, w} D] [∀ (P : Functor Cᵒᵖ D) (X : C) (S : J.Cover X), Limits.HasMultiequalizer (S.index P)] [∀ (X : C), Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D] {FD : DDType u_1} {CD : DType (max v u)} [(X Y : D) → FunLike (FD X Y) (CD X) (CD Y)] [ConcreteCategory D FD] [∀ (X : C), Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ (forget D)] [Limits.PreservesLimits (forget D)] [(forget D).ReflectsIsomorphisms] :

          plusPlusSheaf is isomorphic to an arbitrary choice of left adjoint.

          Equations
          Instances For
            def CategoryTheory.plusPlusFunctorIsoSheafification {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) (D : Type w) [Category.{max v u, w} D] [∀ (P : Functor Cᵒᵖ D) (X : C) (S : J.Cover X), Limits.HasMultiequalizer (S.index P)] [∀ (X : C), Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D] {FD : DDType u_1} {CD : DType (max v u)} [(X Y : D) → FunLike (FD X Y) (CD X) (CD Y)] [ConcreteCategory D FD] [∀ (X : C), Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ (forget D)] [Limits.PreservesLimits (forget D)] [(forget D).ReflectsIsomorphisms] :

            plusPlusFunctor is isomorphic to sheafification.

            Equations
            Instances For
              def CategoryTheory.plusPlusIsoSheafify {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) (D : Type w) [Category.{max v u, w} D] [∀ (P : Functor Cᵒᵖ D) (X : C) (S : J.Cover X), Limits.HasMultiequalizer (S.index P)] [∀ (X : C), Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D] {FD : DDType u_1} {CD : DType (max v u)} [(X Y : D) → FunLike (FD X Y) (CD X) (CD Y)] [ConcreteCategory D FD] [∀ (X : C), Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ (forget D)] [Limits.PreservesLimits (forget D)] [(forget D).ReflectsIsomorphisms] (P : Functor Cᵒᵖ D) :

              plusPlus is isomorphic to sheafify.

              Equations
              Instances For
                @[simp]
                theorem CategoryTheory.toSheafify_plusPlusIsoSheafify_hom {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) (D : Type w) [Category.{max v u, w} D] [∀ (P : Functor Cᵒᵖ D) (X : C) (S : J.Cover X), Limits.HasMultiequalizer (S.index P)] [∀ (X : C), Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D] {FD : DDType u_1} {CD : DType (max v u)} [(X Y : D) → FunLike (FD X Y) (CD X) (CD Y)] [ConcreteCategory D FD] [∀ (X : C), Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ (forget D)] [Limits.PreservesLimits (forget D)] [(forget D).ReflectsIsomorphisms] (P : Functor Cᵒᵖ D) :
                @[simp]
                theorem CategoryTheory.toSheafify_plusPlusIsoSheafify_hom_assoc {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) (D : Type w) [Category.{max v u, w} D] [∀ (P : Functor Cᵒᵖ D) (X : C) (S : J.Cover X), Limits.HasMultiequalizer (S.index P)] [∀ (X : C), Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D] {FD : DDType u_1} {CD : DType (max v u)} [(X Y : D) → FunLike (FD X Y) (CD X) (CD Y)] [ConcreteCategory D FD] [∀ (X : C), Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ (forget D)] [Limits.PreservesLimits (forget D)] [(forget D).ReflectsIsomorphisms] (P : Functor Cᵒᵖ D) {Z : Functor Cᵒᵖ D} (h : sheafify J P Z) :
                instance CategoryTheory.instHasSheafifyOfHasFiniteLimits {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) (D : Type w) [Category.{max v u, w} D] [∀ (P : Functor Cᵒᵖ D) (X : C) (S : J.Cover X), Limits.HasMultiequalizer (S.index P)] [∀ (X : C), Limits.HasColimitsOfShape (J.Cover X)ᵒᵖ D] {FD : DDType u_1} {CD : DType (max v u)} [(X Y : D) → FunLike (FD X Y) (CD X) (CD Y)] [ConcreteCategory D FD] [∀ (X : C), Limits.PreservesColimitsOfShape (J.Cover X)ᵒᵖ (forget D)] [Limits.PreservesLimits (forget D)] [(forget D).ReflectsIsomorphisms] [Limits.HasFiniteLimits D] :