Documentation

Mathlib.CategoryTheory.Sites.PreservesLocallyBijective

Preserving and reflecting local injectivity and surjectivity #

This file proves that precomposition with a cocontinuous functor preserves local injectivity and surjectivity of morphisms of presheaves, and that precomposition with a cover preserving and cover dense functor reflects the same properties.

theorem CategoryTheory.Presheaf.isLocallyInjective_whisker_iff {C : Type u_1} {D : Type u_2} {A : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_7, u_3} A] (J : GrothendieckTopology C) (K : GrothendieckTopology D) (H : Functor C D) {F G : Functor Dᵒᵖ A} (f : F G) [HasForget A] (hH : CoverPreserving J K H) [H.IsCocontinuous J K] [H.IsCoverDense K] :
theorem CategoryTheory.Presheaf.isLocallySurjective_whisker_iff {C : Type u_1} {D : Type u_2} {A : Type u_3} [Category.{u_4, u_1} C] [Category.{u_5, u_2} D] [Category.{u_6, u_3} A] (J : GrothendieckTopology C) (K : GrothendieckTopology D) (H : Functor C D) {F G : Functor Dᵒᵖ A} (f : F G) [HasForget A] (hH : CoverPreserving J K H) [H.IsCocontinuous J K] [H.IsCoverDense K] :