Documentation

Mathlib.CategoryTheory.Sites.LocallySurjective

Locally surjective morphisms #

Main definitions #

Main results #

def CategoryTheory.Presheaf.imageSieve {C : Type u} [Category.{v, u} C] {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F G : Functor Cᵒᵖ A} (f : F G) {U : C} (s : ToType (G.obj (Opposite.op U))) :

Given f : F ⟶ G, a morphism between presieves, and s : G.obj (op U), this is the sieve of U consisting of the i : V ⟶ U such that s restricted along i is in the image of f.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem CategoryTheory.Presheaf.imageSieve_apply {C : Type u} [Category.{v, u} C] {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F G : Functor Cᵒᵖ A} (f : F G) {U : C} (s : ToType (G.obj (Opposite.op U))) (V : C) (i : V U) :
    theorem CategoryTheory.Presheaf.imageSieve_eq_sieveOfSection {C : Type u} [Category.{v, u} C] {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F G : Functor Cᵒᵖ A} (f : F G) {U : C} (s : ToType (G.obj (Opposite.op U))) :
    theorem CategoryTheory.Presheaf.imageSieve_whisker_forget {C : Type u} [Category.{v, u} C] {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F G : Functor Cᵒᵖ A} (f : F G) {U : C} (s : ToType (G.obj (Opposite.op U))) :
    theorem CategoryTheory.Presheaf.imageSieve_app {C : Type u} [Category.{v, u} C] {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F G : Functor Cᵒᵖ A} (f : F G) {U : C} (s : ToType (F.obj (Opposite.op U))) :
    noncomputable def CategoryTheory.Presheaf.localPreimage {C : Type u} [Category.{v, u} C] {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F G : Functor Cᵒᵖ A} (f : F G) {U : Cᵒᵖ} (s : ToType (G.obj U)) {V : C} (g : V Opposite.unop U) (hg : (imageSieve f s).arrows g) :

    If a morphism g : V ⟶ U.unop belongs to the sieve imageSieve f s g, then this is choice of a preimage of G.map g.op s in F.obj (op V), see app_localPreimage.

    Equations
    Instances For
      @[simp]
      theorem CategoryTheory.Presheaf.app_localPreimage {C : Type u} [Category.{v, u} C] {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F G : Functor Cᵒᵖ A} (f : F G) {U : Cᵒᵖ} (s : ToType (G.obj U)) {V : C} (g : V Opposite.unop U) (hg : (imageSieve f s).arrows g) :
      class CategoryTheory.Presheaf.IsLocallySurjective {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F G : Functor Cᵒᵖ A} (f : F G) :

      A morphism of presheaves f : F ⟶ G is locally surjective with respect to a grothendieck topology if every section of G is locally in the image of f.

      Instances
        theorem CategoryTheory.Presheaf.imageSieve_mem {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F G : Functor Cᵒᵖ A} (f : F G) [IsLocallySurjective J f] {U : Cᵒᵖ} (s : ToType (G.obj U)) :
        instance CategoryTheory.Presheaf.instIsLocallySurjectiveHomObjForgetTypeWhiskerRightOpposite {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F G : Functor Cᵒᵖ A} (f : F G) [IsLocallySurjective J f] :
        theorem CategoryTheory.Presheaf.isLocallySurjective_iff_range_sheafify_eq_top {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F G : Functor Cᵒᵖ A} (f : F G) :
        @[deprecated CategoryTheory.Presheaf.isLocallySurjective_iff_range_sheafify_eq_top (since := "2025-01-26")]
        theorem CategoryTheory.Presheaf.isLocallySurjective_iff_imagePresheaf_sheafify_eq_top {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F G : Functor Cᵒᵖ A} (f : F G) :

        Alias of CategoryTheory.Presheaf.isLocallySurjective_iff_range_sheafify_eq_top.

        @[deprecated CategoryTheory.Presheaf.isLocallySurjective_iff_range_sheafify_eq_top' (since := "2025-01-26")]

        Alias of CategoryTheory.Presheaf.isLocallySurjective_iff_range_sheafify_eq_top'.

        theorem CategoryTheory.Presheaf.isLocallySurjective_iff_whisker_forget {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F G : Functor Cᵒᵖ A} (f : F G) :
        theorem CategoryTheory.Presheaf.isLocallySurjective_of_surjective {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F G : Functor Cᵒᵖ A} (f : F G) (H : ∀ (U : Cᵒᵖ), Function.Surjective (ConcreteCategory.hom (f.app U))) :
        instance CategoryTheory.Presheaf.isLocallySurjective_of_iso {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F G : Functor Cᵒᵖ A} (f : F G) [IsIso f] :
        instance CategoryTheory.Presheaf.isLocallySurjective_comp {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F₁ F₂ F₃ : Functor Cᵒᵖ A} (f₁ : F₁ F₂) (f₂ : F₂ F₃) [IsLocallySurjective J f₁] [IsLocallySurjective J f₂] :
        theorem CategoryTheory.Presheaf.isLocallySurjective_of_isLocallySurjective {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F₁ F₂ F₃ : Functor Cᵒᵖ A} (f₁ : F₁ F₂) (f₂ : F₂ F₃) [IsLocallySurjective J (CategoryStruct.comp f₁ f₂)] :
        theorem CategoryTheory.Presheaf.isLocallySurjective_of_isLocallySurjective_fac {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F₁ F₂ F₃ : Functor Cᵒᵖ A} {f₁ : F₁ F₂} {f₂ : F₂ F₃} {f₃ : F₁ F₃} (fac : CategoryStruct.comp f₁ f₂ = f₃) [IsLocallySurjective J f₃] :
        theorem CategoryTheory.Presheaf.isLocallySurjective_iff_of_fac {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F₁ F₂ F₃ : Functor Cᵒᵖ A} {f₁ : F₁ F₂} {f₂ : F₂ F₃} {f₃ : F₁ F₃} (fac : CategoryStruct.comp f₁ f₂ = f₃) [IsLocallySurjective J f₁] :
        theorem CategoryTheory.Presheaf.comp_isLocallySurjective_iff {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F₁ F₂ F₃ : Functor Cᵒᵖ A} (f₁ : F₁ F₂) (f₂ : F₂ F₃) [IsLocallySurjective J f₁] :
        theorem CategoryTheory.Presheaf.isLocallySurjective_of_le {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {K : GrothendieckTopology C} (hJK : J K) {F G : Functor Cᵒᵖ A} (f : F G) (h : IsLocallySurjective J f) :
        theorem CategoryTheory.Presheaf.isLocallyInjective_of_isLocallyInjective_of_isLocallySurjective {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F₁ F₂ F₃ : Functor Cᵒᵖ A} (f₁ : F₁ F₂) (f₂ : F₂ F₃) [IsLocallyInjective J (CategoryStruct.comp f₁ f₂)] [IsLocallySurjective J f₁] :
        theorem CategoryTheory.Presheaf.isLocallyInjective_of_isLocallyInjective_of_isLocallySurjective_fac {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F₁ F₂ F₃ : Functor Cᵒᵖ A} {f₁ : F₁ F₂} {f₂ : F₂ F₃} (f₃ : F₁ F₃) (fac : CategoryStruct.comp f₁ f₂ = f₃) [IsLocallyInjective J f₃] [IsLocallySurjective J f₁] :
        theorem CategoryTheory.Presheaf.isLocallySurjective_of_isLocallySurjective_of_isLocallyInjective {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F₁ F₂ F₃ : Functor Cᵒᵖ A} (f₁ : F₁ F₂) (f₂ : F₂ F₃) [IsLocallySurjective J (CategoryStruct.comp f₁ f₂)] [IsLocallyInjective J f₂] :
        theorem CategoryTheory.Presheaf.isLocallySurjective_of_isLocallySurjective_of_isLocallyInjective_fac {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F₁ F₂ F₃ : Functor Cᵒᵖ A} {f₁ : F₁ F₂} {f₂ : F₂ F₃} (f₃ : F₁ F₃) (fac : CategoryStruct.comp f₁ f₂ = f₃) [IsLocallySurjective J f₃] [IsLocallyInjective J f₂] :
        theorem CategoryTheory.Presheaf.comp_isLocallyInjective_iff {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F₁ F₂ F₃ : Functor Cᵒᵖ A} (f₁ : F₁ F₂) (f₂ : F₂ F₃) [IsLocallyInjective J f₁] [IsLocallySurjective J f₁] :
        theorem CategoryTheory.Presheaf.isLocallySurjective_comp_iff {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F₁ F₂ F₃ : Functor Cᵒᵖ A} (f₁ : F₁ F₂) (f₂ : F₂ F₃) [IsLocallyInjective J f₂] [IsLocallySurjective J f₂] :

        The image of F in J.sheafify F is isomorphic to the sheafification.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          instance CategoryTheory.Presheaf.isLocallySurjective_toSheafify' {C : Type u} [Category.{v, u} C] (J : GrothendieckTopology C) {D : Type u_2} [Category.{u_4, u_2} D] {FD : DDType u_3} {CD : DType (max u v)} [(X Y : D) → FunLike (FD X Y) (CD X) (CD Y)] [ConcreteCategory D FD] (P : Functor Cᵒᵖ D) [HasWeakSheafify J D] [J.HasSheafCompose (forget D)] [J.PreservesSheafification (forget D)] :
          @[reducible, inline]
          abbrev CategoryTheory.Sheaf.IsLocallySurjective {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F₁ F₂ : Sheaf J A} (φ : F₁ F₂) :

          If φ : F₁ ⟶ F₂ is a morphism of sheaves, this is an abbreviation for Presheaf.IsLocallySurjective J φ.val.

          Equations
          Instances For
            theorem CategoryTheory.Sheaf.isLocallySurjective_sheafToPresheaf_map_iff {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F₁ F₂ : Sheaf J A} (φ : F₁ F₂) :
            instance CategoryTheory.Sheaf.isLocallySurjective_comp {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F₁ F₂ F₃ : Sheaf J A} (φ : F₁ F₂) (ψ : F₂ F₃) [IsLocallySurjective φ] [IsLocallySurjective ψ] :
            instance CategoryTheory.Sheaf.isLocallySurjective_of_iso {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F₁ F₂ : Sheaf J A} (φ : F₁ F₂) [IsIso φ] :
            instance CategoryTheory.Sheaf.instIsLocallySurjectiveHomObjForgetTypeMapSheafCompose {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F₁ F₂ : Sheaf J A} (φ : F₁ F₂) [J.HasSheafCompose (forget A)] [IsLocallySurjective φ] :
            instance CategoryTheory.Sheaf.epi_of_isLocallySurjective {C : Type u} [Category.{v, u} C] {J : GrothendieckTopology C} {A : Type u'} [Category.{v', u'} A] {FA : AAType u_1} {CA : AType w'} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] [ConcreteCategory A FA] {F₁ F₂ : Sheaf J A} (φ : F₁ F₂) [J.HasSheafCompose (forget A)] [IsLocallySurjective φ] :
            Epi φ
            noncomputable def CategoryTheory.Presieve.FamilyOfElements.localPreimage {C : Type u} [Category.{v, u} C] {R R' : Functor Cᵒᵖ (Type w)} (φ : R R') {X : Cᵒᵖ} (r' : R'.obj X) :

            Given a morphism φ : R ⟶ R' of presheaves of types and r' : R'.obj X, this is the family of elements of R defined over the sieve Presheaf.imageSieve φ r' which sends a map in this sieve to an arbitrary choice of a preimage of the restriction of r'.

            Equations
            Instances For