Documentation

Mathlib.CategoryTheory.Sites.LocallySurjective

Locally surjective morphisms #

Main definitions #

Main results #

Given f : F ⟶ G, a morphism between presieves, and s : G.obj (op U), this is the sieve of U consisting of the i : V ⟶ U such that s restricted along i is in the image of f.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem CategoryTheory.Presheaf.imageSieve_apply {C : Type u} [CategoryTheory.Category.{v, u} C] {A : Type u'} [CategoryTheory.Category.{v', u'} A] [CategoryTheory.ConcreteCategory A] {F G : CategoryTheory.Functor Cᵒᵖ A} (f : F G) {U : C} (s : (CategoryTheory.forget A).obj (G.obj (Opposite.op U))) (V : C) (i : V U) :
    (CategoryTheory.Presheaf.imageSieve f s).arrows i = ∃ (t : (CategoryTheory.forget A).obj (F.obj (Opposite.op V))), (f.app (Opposite.op V)) t = (G.map i.op) s

    If a morphism g : V ⟶ U.unop belongs to the sieve imageSieve f s g, then this is choice of a preimage of G.map g.op s in F.obj (op V), see app_localPreimage.

    Equations
    Instances For

      A morphism of presheaves f : F ⟶ G is locally surjective with respect to a grothendieck topology if every section of G is locally in the image of f.

      Instances

        The image of F in J.sheafify F is isomorphic to the sheafification.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[reducible, inline]

          If φ : F₁ ⟶ F₂ is a morphism of sheaves, this is an abbreviation for Presheaf.IsLocallySurjective J φ.val.

          Equations
          Instances For

            Given a morphism φ : R ⟶ R' of presheaves of types and r' : R'.obj X, this is the family of elements of R defined over the sieve Presheaf.imageSieve φ r' which sends a map in this sieve to an arbitrary choice of a preimage of the restriction of r'.

            Equations
            Instances For