Documentation

Mathlib.CategoryTheory.SmallObject.WellOrderInductionData

Limits of inverse systems indexed by well-ordered types #

Given a functor F : Jᵒᵖ ⥤ Type v where J is a well-ordered type, we introduce a structure F.WellOrderInductionData which allows to show that the map F.sections → F.obj (op ⊥) is surjective.

The data and properties in F.WellOrderInductionData consist of a section to the maps F.obj (op (Order.succ j)) → F.obj (op j) when j is not maximal, and, when j is limit, a section to the canonical map from F.obj (op j) to the type of compatible families of elements in F.obj (op i) for i < j.

In other words, from val₀ : F.obj (op ⊥), a term d : F.WellOrderInductionData allows the construction, by transfinite induction, of a section of F which restricts to val₀.

Given a functor F : Jᵒᵖ ⥤ Type v where J is a well-ordered type, this data allows to construct a section of F from an element in F.obj (op ⊥), see WellOrderInductionData.sectionsMk.

  • succ (j : J) (hj : ¬IsMax j) (x : F.obj (Opposite.op j)) : F.obj (Opposite.op (Order.succ j))

    A section F.obj (op j) → F.obj (op (Order.succ j)) to the restriction F.obj (op (Order.succ j)) → F.obj (op j) when j is not maximal.

  • map_succ (j : J) (hj : ¬IsMax j) (x : F.obj (Opposite.op j)) : F.map (homOfLE ).op (self.succ j hj x) = x
  • lift (j : J) (hj : Order.IsSuccLimit j) (x : (.functor.op.comp F).sections) : F.obj (Opposite.op j)

    When j is a limit element, and x is a compatible family of elements in F.obj (op i) for all i < j, this is a lifting to F.obj (op j).

  • map_lift (j : J) (hj : Order.IsSuccLimit j) (x : (.functor.op.comp F).sections) (i : J) (hi : i < j) : F.map (homOfLE ).op (self.lift j hj x) = x (Opposite.op i, hi)
Instances For
    structure CategoryTheory.Functor.WellOrderInductionData.Extension {J : Type u} [LinearOrder J] [SuccOrder J] {F : Functor Jᵒᵖ (Type v)} (d : F.WellOrderInductionData) [OrderBot J] (val₀ : F.obj (Opposite.op )) (j : J) :

    Given d : F.WellOrderInductionData, val₀ : F.obj (op ⊥) and j : J, this is the data of an element val : F.obj (op j) such that the induced compatible family of elements in all F.obj (op i) for i ≤ j is determined by val₀ and the choice of "liftings" given by d.

    • val : F.obj (Opposite.op j)

      An element in F.obj (op j), which, by restriction, induces elements in F.obj (op i) for all i ≤ j.

    • map_zero : F.map (homOfLE ).op self.val = val₀
    • map_succ (i : J) (hi : i < j) : F.map (homOfLE ).op self.val = d.succ i (F.map (homOfLE ).op self.val)
    • map_limit (i : J) (hi : Order.IsSuccLimit i) (hij : i j) : F.map (homOfLE hij).op self.val = d.lift i hi fun (x : { x : J // x Set.Iio i }ᵒᵖ) => match x with | Opposite.op k, hk => F.map (homOfLE ).op self.val,
    Instances For
      def CategoryTheory.Functor.WellOrderInductionData.Extension.ofLE {J : Type u} [LinearOrder J] [SuccOrder J] {F : Functor Jᵒᵖ (Type v)} {d : F.WellOrderInductionData} [OrderBot J] {val₀ : F.obj (Opposite.op )} {j : J} (e : d.Extension val₀ j) {i : J} (hij : i j) :
      d.Extension val₀ i

      An element in d.Extension val₀ j induces an element in d.Extension val₀ i when i ≤ j.

      Equations
      • e.ofLE hij = { val := F.map (CategoryTheory.homOfLE hij).op e.val, map_zero := , map_succ := , map_limit := }
      Instances For
        @[simp]
        theorem CategoryTheory.Functor.WellOrderInductionData.Extension.ofLE_val {J : Type u} [LinearOrder J] [SuccOrder J] {F : Functor Jᵒᵖ (Type v)} {d : F.WellOrderInductionData} [OrderBot J] {val₀ : F.obj (Opposite.op )} {j : J} (e : d.Extension val₀ j) {i : J} (hij : i j) :
        (e.ofLE hij).val = F.map (homOfLE hij).op e.val
        theorem CategoryTheory.Functor.WellOrderInductionData.Extension.val_injective {J : Type u} [LinearOrder J] [SuccOrder J] {F : Functor Jᵒᵖ (Type v)} {d : F.WellOrderInductionData} [OrderBot J] {val₀ : F.obj (Opposite.op )} {j : J} {e e' : d.Extension val₀ j} (h : e.val = e'.val) :
        e = e'
        instance CategoryTheory.Functor.WellOrderInductionData.Extension.instSubsingletonOfWellFoundedLT {J : Type u} [LinearOrder J] [SuccOrder J] {F : Functor Jᵒᵖ (Type v)} {d : F.WellOrderInductionData} [OrderBot J] {val₀ : F.obj (Opposite.op )} [WellFoundedLT J] (j : J) :
        Subsingleton (d.Extension val₀ j)
        theorem CategoryTheory.Functor.WellOrderInductionData.Extension.compatibility {J : Type u} [LinearOrder J] [SuccOrder J] {F : Functor Jᵒᵖ (Type v)} {d : F.WellOrderInductionData} [OrderBot J] {val₀ : F.obj (Opposite.op )} [WellFoundedLT J] {j : J} (e : d.Extension val₀ j) {i : J} (e' : d.Extension val₀ i) (h : i j) :
        F.map (homOfLE h).op e.val = e'.val
        def CategoryTheory.Functor.WellOrderInductionData.Extension.zero {J : Type u} [LinearOrder J] [SuccOrder J] {F : Functor Jᵒᵖ (Type v)} (d : F.WellOrderInductionData) [OrderBot J] (val₀ : F.obj (Opposite.op )) :
        d.Extension val₀

        The obvious element in d.Extension val₀ ⊥.

        Equations
        Instances For
          @[simp]
          theorem CategoryTheory.Functor.WellOrderInductionData.Extension.zero_val {J : Type u} [LinearOrder J] [SuccOrder J] {F : Functor Jᵒᵖ (Type v)} (d : F.WellOrderInductionData) [OrderBot J] (val₀ : F.obj (Opposite.op )) :
          (zero d val₀).val = val₀
          def CategoryTheory.Functor.WellOrderInductionData.Extension.succ {J : Type u} [LinearOrder J] [SuccOrder J] {F : Functor Jᵒᵖ (Type v)} {d : F.WellOrderInductionData} [OrderBot J] {val₀ : F.obj (Opposite.op )} {j : J} (e : d.Extension val₀ j) (hj : ¬IsMax j) :
          d.Extension val₀ (Order.succ j)

          The element in d.Extension val₀ (Order.succ j) obtained by extending an element in d.Extension val₀ j when j is not maximal.

          Equations
          • e.succ hj = { val := d.succ j hj e.val, map_zero := , map_succ := , map_limit := }
          Instances For
            def CategoryTheory.Functor.WellOrderInductionData.Extension.limit {J : Type u} [LinearOrder J] [SuccOrder J] {F : Functor Jᵒᵖ (Type v)} {d : F.WellOrderInductionData} [OrderBot J] {val₀ : F.obj (Opposite.op )} [WellFoundedLT J] (j : J) (hj : Order.IsSuccLimit j) (e : (i : J) → i < jd.Extension val₀ i) :
            d.Extension val₀ j

            When j is a limit element, this is the exntesion to d.Extension val₀ j of a family of elements in d.Extension val₀ i for all i < j.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              instance CategoryTheory.Functor.WellOrderInductionData.Extension.instNonempty {J : Type u} [LinearOrder J] [SuccOrder J] {F : Functor Jᵒᵖ (Type v)} {d : F.WellOrderInductionData} [OrderBot J] {val₀ : F.obj (Opposite.op )} [WellFoundedLT J] (j : J) :
              Nonempty (d.Extension val₀ j)
              noncomputable instance CategoryTheory.Functor.WellOrderInductionData.Extension.instUnique {J : Type u} [LinearOrder J] [SuccOrder J] {F : Functor Jᵒᵖ (Type v)} {d : F.WellOrderInductionData} [OrderBot J] {val₀ : F.obj (Opposite.op )} [WellFoundedLT J] (j : J) :
              Unique (d.Extension val₀ j)
              Equations
              noncomputable def CategoryTheory.Functor.WellOrderInductionData.sectionsMk {J : Type u} [LinearOrder J] [SuccOrder J] {F : Functor Jᵒᵖ (Type v)} (d : F.WellOrderInductionData) [OrderBot J] [WellFoundedLT J] (val₀ : F.obj (Opposite.op )) :
              F.sections

              When J is a well-ordered type, F : Jᵒᵖ ⥤ Type v, and d : F.WellOrderInductionData, this is the section of F that is determined by val₀ : F.obj (op ⊥)

              Equations
              Instances For
                theorem CategoryTheory.Functor.WellOrderInductionData.sectionsMk_val_op_bot {J : Type u} [LinearOrder J] [SuccOrder J] {F : Functor Jᵒᵖ (Type v)} (d : F.WellOrderInductionData) [OrderBot J] [WellFoundedLT J] (val₀ : F.obj (Opposite.op )) :
                (d.sectionsMk val₀) (Opposite.op ) = val₀
                theorem CategoryTheory.Functor.WellOrderInductionData.surjective {J : Type u} [LinearOrder J] [SuccOrder J] {F : Functor Jᵒᵖ (Type v)} (d : F.WellOrderInductionData) [OrderBot J] [WellFoundedLT J] :
                Function.Surjective ((fun (s : (j : Jᵒᵖ) → F.obj j) => s (Opposite.op )) Subtype.val)