Documentation

Mathlib.CategoryTheory.Subfunctor.Finite

Subpresheaves that are generated by finitely many sections #

Given F : Cᵒᵖ ⥤ Type w, G : Subfunctor F, objects X : ι → Cᵒᵖ and sections x : (i : ι) → F.obj (X i), we define a predicate G.IsGeneratedBy x saying that G is the subpresheaf generated by the sections x i. If this holds for a finite index type ι, we say that G is "finite", and this gives a type class G.IsFinite.

def CategoryTheory.Subfunctor.IsGeneratedBy {C : Type u} [Category.{v, u} C] {F : Functor Cᵒᵖ (Type w)} (G : Subfunctor F) {ι : Type w'} {X : ιCᵒᵖ} (x : (i : ι) → F.obj (X i)) :

A subpresheaf G : Subfunctor F is generated by sections x i : F.obj (X i) if ⨆ (i : ι), ofSection (x i) = G.

Equations
Instances For
    theorem CategoryTheory.Subfunctor.isGeneratedBy_iff {C : Type u} [Category.{v, u} C] {F : Functor Cᵒᵖ (Type w)} (G : Subfunctor F) {ι : Type w'} {X : ιCᵒᵖ} (x : (i : ι) → F.obj (X i)) :
    G.IsGeneratedBy x ⨆ (i : ι), ofSection (x i) = G
    theorem CategoryTheory.Subfunctor.IsGeneratedBy.iSup_eq {C : Type u} [Category.{v, u} C] {F : Functor Cᵒᵖ (Type w)} {G : Subfunctor F} {ι : Type w'} {X : ιCᵒᵖ} {x : (i : ι) → F.obj (X i)} (h : G.IsGeneratedBy x) :
    ⨆ (i : ι), ofSection (x i) = G
    theorem CategoryTheory.Subfunctor.IsGeneratedBy.ofSection_le {C : Type u} [Category.{v, u} C] {F : Functor Cᵒᵖ (Type w)} {G : Subfunctor F} {ι : Type w'} {X : ιCᵒᵖ} {x : (i : ι) → F.obj (X i)} (h : G.IsGeneratedBy x) (i : ι) :
    ofSection (x i) G
    theorem CategoryTheory.Subfunctor.IsGeneratedBy.mem {C : Type u} [Category.{v, u} C] {F : Functor Cᵒᵖ (Type w)} {G : Subfunctor F} {ι : Type w'} {X : ιCᵒᵖ} {x : (i : ι) → F.obj (X i)} (h : G.IsGeneratedBy x) (i : ι) :
    x i G.obj (X i)
    theorem CategoryTheory.Subfunctor.IsGeneratedBy.of_equiv {C : Type u} [Category.{v, u} C] {F : Functor Cᵒᵖ (Type w)} {G : Subfunctor F} {ι : Type w'} {X : ιCᵒᵖ} {x : (i : ι) → F.obj (X i)} (h : G.IsGeneratedBy x) {ι' : Type w''} (e : ι' ι) :
    G.IsGeneratedBy fun (i' : ι') => x (e i')
    theorem CategoryTheory.Subfunctor.IsGeneratedBy.image {C : Type u} [Category.{v, u} C] {F : Functor Cᵒᵖ (Type w)} {G : Subfunctor F} {ι : Type w'} {X : ιCᵒᵖ} {x : (i : ι) → F.obj (X i)} (h : G.IsGeneratedBy x) {F' : Functor Cᵒᵖ (Type w)} (f : F F') :
    (G.image f).IsGeneratedBy fun (i : ι) => f.app (X i) (x i)

    A subpresheaf of types is "finite" if it is generated by finitely many sections.

    Instances

      A choice of index type for the generating sections of a finitely generated subpresheaf.

      Equations
      Instances For
        noncomputable def CategoryTheory.Subfunctor.IsFinite.X {C : Type u} [Category.{v, u} C] {F : Functor Cᵒᵖ (Type w)} {G : Subfunctor F} [hG : G.IsFinite] :
        Index GCᵒᵖ

        Objects on which a choice of generating sections of a finitely generated subpresheaf are defined.

        Equations
        Instances For
          noncomputable def CategoryTheory.Subfunctor.IsFinite.x {C : Type u} [Category.{v, u} C] {F : Functor Cᵒᵖ (Type w)} {G : Subfunctor F} [hG : G.IsFinite] (i : Index G) :
          F.obj (X i)

          A choice of generating sections of a finitely generated subpresheaf.

          Equations
          Instances For
            theorem CategoryTheory.Subfunctor.IsGeneratedBy.isFinite {C : Type u} [Category.{v, u} C] {F : Functor Cᵒᵖ (Type w)} (G : Subfunctor F) {ι : Type w'} [Finite ι] {X : ιCᵒᵖ} {x : (i : ι) → F.obj (X i)} (h : G.IsGeneratedBy x) :
            @[deprecated CategoryTheory.Subfunctor.IsGeneratedBy (since := "2025-12-11")]
            def CategoryTheory.Subfunctor.Subpresheaf.IsGeneratedBy {C : Type u} [Category.{v, u} C] {F : Functor Cᵒᵖ (Type w)} (G : Subfunctor F) {ι : Type w'} {X : ιCᵒᵖ} (x : (i : ι) → F.obj (X i)) :

            Alias of CategoryTheory.Subfunctor.IsGeneratedBy.


            A subpresheaf G : Subfunctor F is generated by sections x i : F.obj (X i) if ⨆ (i : ι), ofSection (x i) = G.

            Equations
            Instances For
              @[deprecated CategoryTheory.Subfunctor.isGeneratedBy_iff (since := "2025-12-11")]
              theorem CategoryTheory.Subfunctor.Subpresheaf.isGeneratedBy_iff {C : Type u} [Category.{v, u} C] {F : Functor Cᵒᵖ (Type w)} (G : Subfunctor F) {ι : Type w'} {X : ιCᵒᵖ} (x : (i : ι) → F.obj (X i)) :
              G.IsGeneratedBy x ⨆ (i : ι), Subfunctor.ofSection (x i) = G

              Alias of CategoryTheory.Subfunctor.isGeneratedBy_iff.

              @[deprecated CategoryTheory.Subfunctor.IsGeneratedBy.iSup_eq (since := "2025-12-11")]
              theorem CategoryTheory.Subfunctor.Subpresheaf.IsGeneratedBy.iSup_eq {C : Type u} [Category.{v, u} C] {F : Functor Cᵒᵖ (Type w)} {G : Subfunctor F} {ι : Type w'} {X : ιCᵒᵖ} {x : (i : ι) → F.obj (X i)} (h : G.IsGeneratedBy x) :
              ⨆ (i : ι), Subfunctor.ofSection (x i) = G

              Alias of CategoryTheory.Subfunctor.IsGeneratedBy.iSup_eq.

              @[deprecated CategoryTheory.Subfunctor.IsGeneratedBy.ofSection_le (since := "2025-12-11")]
              theorem CategoryTheory.Subfunctor.Subpresheaf.IsGeneratedBy.ofSection_le {C : Type u} [Category.{v, u} C] {F : Functor Cᵒᵖ (Type w)} {G : Subfunctor F} {ι : Type w'} {X : ιCᵒᵖ} {x : (i : ι) → F.obj (X i)} (h : G.IsGeneratedBy x) (i : ι) :

              Alias of CategoryTheory.Subfunctor.IsGeneratedBy.ofSection_le.

              @[deprecated CategoryTheory.Subfunctor.IsGeneratedBy.mem (since := "2025-12-11")]
              theorem CategoryTheory.Subfunctor.Subpresheaf.IsGeneratedBy.mem {C : Type u} [Category.{v, u} C] {F : Functor Cᵒᵖ (Type w)} {G : Subfunctor F} {ι : Type w'} {X : ιCᵒᵖ} {x : (i : ι) → F.obj (X i)} (h : G.IsGeneratedBy x) (i : ι) :
              x i G.obj (X i)

              Alias of CategoryTheory.Subfunctor.IsGeneratedBy.mem.

              @[deprecated CategoryTheory.Subfunctor.IsGeneratedBy.of_equiv (since := "2025-12-11")]
              theorem CategoryTheory.Subfunctor.Subpresheaf.IsGeneratedBy.of_equiv {C : Type u} [Category.{v, u} C] {F : Functor Cᵒᵖ (Type w)} {G : Subfunctor F} {ι : Type w'} {X : ιCᵒᵖ} {x : (i : ι) → F.obj (X i)} (h : G.IsGeneratedBy x) {ι' : Type w''} (e : ι' ι) :
              G.IsGeneratedBy fun (i' : ι') => x (e i')

              Alias of CategoryTheory.Subfunctor.IsGeneratedBy.of_equiv.

              @[deprecated CategoryTheory.Subfunctor.IsGeneratedBy.image (since := "2025-12-11")]
              theorem CategoryTheory.Subfunctor.Subpresheaf.IsGeneratedBy.image {C : Type u} [Category.{v, u} C] {F : Functor Cᵒᵖ (Type w)} {G : Subfunctor F} {ι : Type w'} {X : ιCᵒᵖ} {x : (i : ι) → F.obj (X i)} (h : G.IsGeneratedBy x) {F' : Functor Cᵒᵖ (Type w)} (f : F F') :
              (G.image f).IsGeneratedBy fun (i : ι) => f.app (X i) (x i)

              Alias of CategoryTheory.Subfunctor.IsGeneratedBy.image.

              @[deprecated CategoryTheory.Subfunctor.IsFinite (since := "2025-12-11")]

              Alias of CategoryTheory.Subfunctor.IsFinite.


              A subpresheaf of types is "finite" if it is generated by finitely many sections.

              Equations
              Instances For
                @[deprecated CategoryTheory.Subfunctor.IsFinite.Index (since := "2025-12-11")]

                Alias of CategoryTheory.Subfunctor.IsFinite.Index.


                A choice of index type for the generating sections of a finitely generated subpresheaf.

                Equations
                Instances For
                  @[deprecated CategoryTheory.Subfunctor.IsFinite.X (since := "2025-12-11")]

                  Alias of CategoryTheory.Subfunctor.IsFinite.X.


                  Objects on which a choice of generating sections of a finitely generated subpresheaf are defined.

                  Equations
                  Instances For
                    @[deprecated CategoryTheory.Subfunctor.IsFinite.x (since := "2025-12-11")]

                    Alias of CategoryTheory.Subfunctor.IsFinite.x.


                    A choice of generating sections of a finitely generated subpresheaf.

                    Equations
                    Instances For
                      @[deprecated CategoryTheory.Subfunctor.isGeneratedBy_of_isFinite (since := "2025-12-11")]

                      Alias of CategoryTheory.Subfunctor.isGeneratedBy_of_isFinite.

                      @[deprecated CategoryTheory.Subfunctor.IsGeneratedBy.isFinite (since := "2025-12-11")]
                      theorem CategoryTheory.Subfunctor.Subpresheaf.IsGeneratedBy.isFinite {C : Type u} [Category.{v, u} C] {F : Functor Cᵒᵖ (Type w)} (G : Subfunctor F) {ι : Type w'} [Finite ι] {X : ιCᵒᵖ} {x : (i : ι) → F.obj (X i)} (h : G.IsGeneratedBy x) :

                      Alias of CategoryTheory.Subfunctor.IsGeneratedBy.isFinite.

                      @[deprecated CategoryTheory.Subfunctor.image_isFinite (since := "2025-12-11")]

                      Alias of CategoryTheory.Subfunctor.image_isFinite.

                      @[reducible, inline]
                      abbrev CategoryTheory.PresheafIsGeneratedBy {C : Type u} [Category.{v, u} C] (F : Functor Cᵒᵖ (Type w)) {ι : Type w'} {X : ιCᵒᵖ} (x : (i : ι) → F.obj (X i)) :

                      The condition that a presheaf of types F : Cᵒᵖ ⥤ Type w is generated by a family of sections.

                      Equations
                      Instances For
                        theorem CategoryTheory.PresheafIsGeneratedBy.range {C : Type u} [Category.{v, u} C] {F : Functor Cᵒᵖ (Type w)} {ι : Type w'} {X : ιCᵒᵖ} {x : (i : ι) → F.obj (X i)} (h : PresheafIsGeneratedBy F x) {F' : Functor Cᵒᵖ (Type w)} (f : F F') :
                        (Subfunctor.range f).IsGeneratedBy fun (i : ι) => f.app (X i) (x i)
                        theorem CategoryTheory.PresheafIsGeneratedBy.of_epi {C : Type u} [Category.{v, u} C] {F : Functor Cᵒᵖ (Type w)} {ι : Type w'} {X : ιCᵒᵖ} {x : (i : ι) → F.obj (X i)} (h : PresheafIsGeneratedBy F x) {F' : Functor Cᵒᵖ (Type w)} (f : F F') [Epi f] :
                        PresheafIsGeneratedBy F' fun (i : ι) => f.app (X i) (x i)
                        @[reducible, inline]

                        A presheaf is "finite" if it is generated by finitely many sections.

                        Equations
                        Instances For