Comparison between Subfunctor, MonoOver and Subobject #
Given a type-valued functor F : C ⥤ Type w, we define an equivalence
of categories Subfunctor.equivalenceMonoOver F : Subfunctor F ≌ MonoOver F
and an order isomorphism Subfunctor.orderIsoSubject F : Subfunctor F ≃o Subobject F.
noncomputable def
CategoryTheory.Subfunctor.equivalenceMonoOver
{C : Type u}
[Category.{v, u} C]
(F : Functor C (Type w))
:
The equivalence of categories Subfunctor F ≌ MonoOver F.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Subfunctor.equivalenceMonoOver_functor_map
{C : Type u}
[Category.{v, u} C]
(F : Functor C (Type w))
{A B : Subfunctor F}
(f : A ⟶ B)
:
@[simp]
theorem
CategoryTheory.Subfunctor.equivalenceMonoOver_functor_obj
{C : Type u}
[Category.{v, u} C]
(F : Functor C (Type w))
(A : Subfunctor F)
:
@[simp]
theorem
CategoryTheory.Subfunctor.equivalenceMonoOver_counitIso
{C : Type u}
[Category.{v, u} C]
(F : Functor C (Type w))
:
(equivalenceMonoOver F).counitIso = NatIso.ofComponents (fun (X : MonoOver F) => MonoOver.isoMk (asIso (toRange X.arrow)).symm ⋯) ⋯
@[simp]
theorem
CategoryTheory.Subfunctor.equivalenceMonoOver_inverse_map
{C : Type u}
[Category.{v, u} C]
(F : Functor C (Type w))
{X Y : MonoOver F}
(f : X ⟶ Y)
:
@[simp]
theorem
CategoryTheory.Subfunctor.equivalenceMonoOver_unitIso
{C : Type u}
[Category.{v, u} C]
(F : Functor C (Type w))
:
@[simp]
theorem
CategoryTheory.Subfunctor.equivalenceMonoOver_inverse_obj
{C : Type u}
[Category.{v, u} C]
(F : Functor C (Type w))
(X : MonoOver F)
:
@[simp]
theorem
CategoryTheory.Subfunctor.range_subobjectMk_ι
{C : Type u}
[Category.{v, u} C]
{F : Functor C (Type w)}
(A : Subfunctor F)
:
@[simp]
theorem
CategoryTheory.Subfunctor.subobjectMk_range_arrow
{C : Type u}
[Category.{v, u} C]
{F : Functor C (Type w)}
(X : Subobject F)
:
noncomputable def
CategoryTheory.Subfunctor.orderIsoSubobject
{C : Type u}
[Category.{v, u} C]
(F : Functor C (Type w))
:
The order isomorphism Subfunctor F ≃o MonoOver F.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CategoryTheory.Subfunctor.orderIsoSubobject_apply
{C : Type u}
[Category.{v, u} C]
(F : Functor C (Type w))
(A : Subfunctor F)
:
@[simp]
theorem
CategoryTheory.Subfunctor.orderIsoSubobject_symm_apply
{C : Type u}
[Category.{v, u} C]
(F : Functor C (Type w))
(X : Subobject F)
:
@[deprecated CategoryTheory.Subfunctor.equivalenceMonoOver (since := "2025-12-11")]
def
CategoryTheory.Subfunctor.Subpresheaf.equivalenceMonoOver
{C : Type u}
[Category.{v, u} C]
(F : Functor C (Type w))
:
Alias of CategoryTheory.Subfunctor.equivalenceMonoOver.
The equivalence of categories Subfunctor F ≌ MonoOver F.
Equations
Instances For
@[deprecated CategoryTheory.Subfunctor.range_subobjectMk_ι (since := "2025-12-11")]
theorem
CategoryTheory.Subfunctor.Subpresheaf.range_subobjectMk_ι
{C : Type u}
[Category.{v, u} C]
{F : Functor C (Type w)}
(A : Subfunctor F)
:
@[deprecated CategoryTheory.Subfunctor.subobjectMk_range_arrow (since := "2025-12-11")]
theorem
CategoryTheory.Subfunctor.Subpresheaf.subobjectMk_range_arrow
{C : Type u}
[Category.{v, u} C]
{F : Functor C (Type w)}
(X : Subobject F)
:
@[deprecated CategoryTheory.Subfunctor.orderIsoSubobject (since := "2025-12-11")]
def
CategoryTheory.Subfunctor.Subpresheaf.orderIsoSubobject
{C : Type u}
[Category.{v, u} C]
(F : Functor C (Type w))
:
Alias of CategoryTheory.Subfunctor.orderIsoSubobject.
The order isomorphism Subfunctor F ≃o MonoOver F.