# Documentation

Mathlib.Combinatorics.SimpleGraph.StronglyRegular

# Strongly regular graphs #

## Main definitions #

• G.IsSRGWith n k ℓ μ (see SimpleGraph.IsSRGWith) is a structure for a SimpleGraph satisfying the following conditions:
• The cardinality of the vertex set is n
• G is a regular graph with degree k
• The number of common neighbors between any two adjacent vertices in G is ℓ
• The number of common neighbors between any two nonadjacent vertices in G is μ

## Main theorems #

• IsSRGWith.compl: the complement of a strongly regular graph is strongly regular.
• IsSRGWith.param_eq: k * (k - ℓ - 1) = (n - k - 1) * μ when 0 < n.
• IsSRGWith.matrix_eq: let A and C be G's and Gᶜ's adjacency matrices respectively and I be the identity matrix, then A ^ 2 = k • I + ℓ • A + μ • C.
structure SimpleGraph.IsSRGWith {V : Type u} [] (G : ) [DecidableRel G.Adj] (n : ) (k : ) (ℓ : ) (μ : ) :
• card :
• regular :
• of_adj : ∀ (v w : V), =
• of_not_adj : ∀ (v w : V), v w¬ = μ

A graph is strongly regular with parameters n k ℓ μ if

• its vertex set has cardinality n
• it is regular with degree k
• every pair of adjacent vertices has ℓ common neighbors
• every pair of nonadjacent vertices has μ common neighbors
Instances For
theorem SimpleGraph.bot_strongly_regular {V : Type u} [] {ℓ : } :

Empty graphs are strongly regular. Note that ℓ can take any value for empty graphs, since there are no pairs of adjacent vertices.

theorem SimpleGraph.IsSRGWith.top {V : Type u} [] [] {μ : } :

Complete graphs are strongly regular. Note that μ can take any value for complete graphs, since there are no distinct pairs of non-adjacent vertices.

theorem SimpleGraph.IsSRGWith.card_neighborFinset_union_eq {V : Type u} [] [] {G : } [DecidableRel G.Adj] {n : } {k : } {ℓ : } {μ : } {v : V} {w : V} (h : ) :
= 2 * k -
theorem SimpleGraph.IsSRGWith.card_neighborFinset_union_of_not_adj {V : Type u} [] [] {G : } [DecidableRel G.Adj] {n : } {k : } {ℓ : } {μ : } {v : V} {w : V} (h : ) (hne : v w) (ha : ¬) :
= 2 * k - μ

Assuming G is strongly regular, 2*(k + 1) - m in G is the number of vertices that are adjacent to either v or w when ¬G.Adj v w. So it's the cardinality of G.neighborSet v ∪ G.neighborSet w.

theorem SimpleGraph.IsSRGWith.card_neighborFinset_union_of_adj {V : Type u} [] [] {G : } [DecidableRel G.Adj] {n : } {k : } {ℓ : } {μ : } {v : V} {w : V} (h : ) (ha : ) :
= 2 * k -
theorem SimpleGraph.compl_neighborFinset_sdiff_inter_eq {V : Type u} [] [] {G : } [DecidableRel G.Adj] {v : V} {w : V} :
\ {v} ( \ {w}) = () \ ({w} {v})
theorem SimpleGraph.sdiff_compl_neighborFinset_inter_eq {V : Type u} [] [] {G : } [DecidableRel G.Adj] {v : V} {w : V} (h : ) :
() \ ({w} {v}) =
theorem SimpleGraph.IsSRGWith.compl_is_regular {V : Type u} [] [] {G : } [DecidableRel G.Adj] {n : } {k : } {ℓ : } {μ : } (h : ) :
theorem SimpleGraph.IsSRGWith.card_commonNeighbors_eq_of_adj_compl {V : Type u} [] [] {G : } [DecidableRel G.Adj] {n : } {k : } {ℓ : } {μ : } (h : ) {v : V} {w : V} (ha : ) :
= n - (2 * k - μ) - 2
theorem SimpleGraph.IsSRGWith.card_commonNeighbors_eq_of_not_adj_compl {V : Type u} [] [] {G : } [DecidableRel G.Adj] {n : } {k : } {ℓ : } {μ : } (h : ) {v : V} {w : V} (hn : v w) (hna : ¬) :
= n - (2 * k - )
theorem SimpleGraph.IsSRGWith.compl {V : Type u} [] [] {G : } [DecidableRel G.Adj] {n : } {k : } {ℓ : } {μ : } (h : ) :
SimpleGraph.IsSRGWith G n (n - k - 1) (n - (2 * k - μ) - 2) (n - (2 * k - ))

The complement of a strongly regular graph is strongly regular.

theorem SimpleGraph.IsSRGWith.param_eq {V : Type u} [] [] {G : } [DecidableRel G.Adj] {n : } {k : } {ℓ : } {μ : } (h : ) (hn : 0 < n) :
k * (k - - 1) = (n - k - 1) * μ

The parameters of a strongly regular graph with at least one vertex satisfy k * (k - ℓ - 1) = (n - k - 1) * μ.

theorem SimpleGraph.IsSRGWith.matrix_eq {V : Type u} [] [] {G : } [DecidableRel G.Adj] {n : } {k : } {ℓ : } {μ : } {α : Type u_1} [] (h : ) :
= k 1 + +

Let A and C be the adjacency matrices of a strongly regular graph with parameters n k ℓ μ and its complement respectively and I be the identity matrix, then A ^ 2 = k • I + ℓ • A + μ • C. C is equivalent to the expression J - I - A more often found in the literature, where J is the all-ones matrix.