Documentation

Mathlib.Data.List.Destutter

Destuttering of Lists #

This file proves theorems about List.destutter (in Data.List.Defs), which greedily removes all non-related items that are adjacent in a list, e.g. [2, 2, 3, 3, 2].destutter (≠) = [2, 3, 2]. Note that we make no guarantees of being the longest sublist with this property; e.g., [123, 1, 2, 5, 543, 1000].destutter (<) = [123, 543, 1000], but a longer ascending chain could be [1, 2, 5, 543, 1000].

Main statements #

Tags #

adjacent, chain, duplicates, remove, list, stutter, destutter

@[simp]
theorem List.destutter'_nil {α : Type u_1} (R : ααProp) [DecidableRel R] {a : α} :
destutter' R a [] = [a]
theorem List.destutter'_cons {α : Type u_1} (l : List α) (R : ααProp) [DecidableRel R] {a b : α} :
destutter' R a (b :: l) = if R a b then a :: destutter' R b l else destutter' R a l
@[simp]
theorem List.destutter'_cons_pos {α : Type u_1} (l : List α) {R : ααProp} [DecidableRel R] {a b : α} (h : R b a) :
destutter' R b (a :: l) = b :: destutter' R a l
@[simp]
theorem List.destutter'_cons_neg {α : Type u_1} (l : List α) {R : ααProp} [DecidableRel R] {a b : α} (h : ¬R b a) :
destutter' R b (a :: l) = destutter' R b l
@[simp]
theorem List.destutter'_singleton {α : Type u_1} (R : ααProp) [DecidableRel R] {a b : α} :
destutter' R a [b] = if R a b then [a, b] else [a]
theorem List.destutter'_sublist {α : Type u_1} (l : List α) (R : ααProp) [DecidableRel R] (a : α) :
(destutter' R a l).Sublist (a :: l)
theorem List.mem_destutter' {α : Type u_1} (l : List α) (R : ααProp) [DecidableRel R] (a : α) :
a destutter' R a l
theorem List.destutter'_is_chain {α : Type u_1} (R : ααProp) [DecidableRel R] (l : List α) {a b : α} :
R a bChain R a (destutter' R b l)
theorem List.destutter'_is_chain' {α : Type u_1} (l : List α) (R : ααProp) [DecidableRel R] (a : α) :
Chain' R (destutter' R a l)
theorem List.destutter'_of_chain {α : Type u_1} (l : List α) (R : ααProp) [DecidableRel R] {a : α} (h : Chain R a l) :
destutter' R a l = a :: l
@[simp]
theorem List.destutter'_eq_self_iff {α : Type u_1} (l : List α) (R : ααProp) [DecidableRel R] (a : α) :
destutter' R a l = a :: l Chain R a l
theorem List.destutter'_ne_nil {α : Type u_1} (l : List α) (R : ααProp) [DecidableRel R] {a : α} :
destutter' R a l []
@[simp]
theorem List.destutter_nil {α : Type u_1} (R : ααProp) [DecidableRel R] :
destutter R [] = []
theorem List.destutter_cons' {α : Type u_1} (l : List α) (R : ααProp) [DecidableRel R] {a : α} :
destutter R (a :: l) = destutter' R a l
theorem List.destutter_cons_cons {α : Type u_1} (l : List α) (R : ααProp) [DecidableRel R] {a b : α} :
destutter R (a :: b :: l) = if R a b then a :: destutter' R b l else destutter' R a l
@[simp]
theorem List.destutter_singleton {α : Type u_1} (R : ααProp) [DecidableRel R] {a : α} :
destutter R [a] = [a]
@[simp]
theorem List.destutter_pair {α : Type u_1} (R : ααProp) [DecidableRel R] {a b : α} :
destutter R [a, b] = if R a b then [a, b] else [a]
theorem List.destutter_sublist {α : Type u_1} (R : ααProp) [DecidableRel R] (l : List α) :
(destutter R l).Sublist l
theorem List.destutter_is_chain' {α : Type u_1} (R : ααProp) [DecidableRel R] (l : List α) :
theorem List.destutter_of_chain' {α : Type u_1} (R : ααProp) [DecidableRel R] (l : List α) :
Chain' R ldestutter R l = l
@[simp]
theorem List.destutter_eq_self_iff {α : Type u_1} (R : ααProp) [DecidableRel R] (l : List α) :
destutter R l = l Chain' R l
theorem List.destutter_idem {α : Type u_1} (l : List α) (R : ααProp) [DecidableRel R] :
@[simp]
theorem List.destutter_eq_nil {α : Type u_1} (R : ααProp) [DecidableRel R] {l : List α} :
destutter R l = [] l = []
@[irreducible]
theorem List.map_destutter {α : Type u_1} {β : Type u_2} {R : ααProp} [DecidableRel R] {R₂ : ββProp} [DecidableRel R₂] {f : αβ} {l : List α} :
(∀ (a : α), a l∀ (b : α), b l(R a b R₂ (f a) (f b)))map f (destutter R l) = destutter R₂ (map f l)

For a relation-preserving map, destutter commutes with map.

theorem List.map_destutter_ne {α : Type u_1} {β : Type u_2} (l : List α) {f : αβ} (h : Function.Injective f) [DecidableEq α] [DecidableEq β] :
map f (destutter (fun (x1 x2 : α) => x1 x2) l) = destutter (fun (x1 x2 : β) => x1 x2) (map f l)

For a injective function f, destutter' (·≠·) commutes with map f.

theorem List.length_destutter'_cotrans_ge {α : Type u_1} {R : ααProp} [DecidableRel R] {b : α} [i : IsTrans α R] {a : α} {l : List α} :
¬R b a(destutter' R b l).length (destutter' R a l).length

destutter' on a relation like ≠ or <, whose negation is transitive, has length monotone under a ¬R changing of the first element.

theorem List.length_destutter'_congr {α : Type u_1} (l : List α) {R : ααProp} [DecidableRel R] {a b : α} [IsEquiv α R] (hab : ¬R a b) :
(destutter' R a l).length = (destutter' R b l).length

List.destutter' on a relation like , whose negation is an equivalence, gives the same length if the first elements are not related.

theorem List.le_length_destutter'_cons {α : Type u_1} {R : ααProp} [DecidableRel R] {a b : α} [IsEquiv α R] {l : List α} :
(destutter' R b l).length (destutter' R a (b :: l)).length

List.destutter' on a relation like ≠, whose negation is an equivalence, has length monotonic under List.cons

theorem List.length_destutter_le_length_destutter_cons {α : Type u_1} {R : ααProp} [DecidableRel R] {a : α} [IsEquiv α R] {l : List α} :
(destutter R l).length (destutter R (a :: l)).length

List.destutter on a relation like ≠, whose negation is an equivalence, has length monotone under List.cons

theorem List.length_destutter_ne_le_length_destutter_cons {α : Type u_1} {l : List α} {a : α} [DecidableEq α] :
(destutter (fun (x1 x2 : α) => x1 x2) l).length (destutter (fun (x1 x2 : α) => x1 x2) (a :: l)).length

destutter ≠ has length monotone under List.cons.

@[irreducible]
theorem List.Chain'.length_le_length_destutter {α : Type u_1} {R : ααProp} [DecidableRel R] [IsEquiv α R] {l₁ l₂ : List α} :
l₁.Sublist l₂Chain' R l₁l₁.length (destutter R l₂).length

destutter of relations like , whose negation is an equivalence relation, gives a list of maximal length over any chain.

In other words, l.destutter R is an R-chain sublist of l, and is at least as long as any other R-chain sublist.

theorem List.Chain'.length_le_length_destutter_ne {α : Type u_1} {l₁ l₂ : List α} [DecidableEq α] (hl : l₁.Sublist l₂) (hl₁ : Chain' (fun (x1 x2 : α) => x1 x2) l₁) :
l₁.length (destutter (fun (x1 x2 : α) => x1 x2) l₂).length

destutter of gives a list of maximal length over any chain.

In other words, l.destutter (· ≠ ·) is a -chain sublist of l, and is at least as long as any other -chain sublist.