Documentation

Mathlib.Data.Prod.Basic

Extra facts about Prod #

This file proves various simple lemmas about Prod. It also defines better delaborators for product projections.

theorem Prod.swap_eq_iff_eq_swap {α : Type u_1} {β : Type u_2} {x : Prod α β} {y : Prod β α} :
Iff (Eq x.swap y) (Eq x y.swap)
def Prod.mk.injArrow {α : Type u_1} {β : Type u_2} {x₁ : α} {y₁ : β} {x₂ : α} {y₂ : β} :
Eq { fst := x₁, snd := y₁ } { fst := x₂, snd := y₂ }P : Sort u_5⦄ → (Eq x₁ x₂Eq y₁ y₂P)P
Equations
Instances For
    theorem Prod.mk.eta {α : Type u_1} {β : Type u_2} {p : Prod α β} :
    Eq { fst := p.fst, snd := p.snd } p
    theorem Prod.forall' {α : Type u_1} {β : Type u_2} {p : αβProp} :
    Iff (∀ (x : Prod α β), p x.fst x.snd) (∀ (a : α) (b : β), p a b)
    theorem Prod.exists' {α : Type u_1} {β : Type u_2} {p : αβProp} :
    Iff (Exists fun (x : Prod α β) => p x.fst x.snd) (Exists fun (a : α) => Exists fun (b : β) => p a b)
    theorem Prod.snd_comp_mk {α : Type u_1} {β : Type u_2} (x : α) :
    theorem Prod.fst_comp_mk {α : Type u_1} {β : Type u_2} (x : α) :
    @[deprecated Prod.map_apply (since := "2024-10-17")]
    theorem Prod.map_mk {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} (f : αβ) (g : γδ) (x : α) (y : γ) :
    Eq (map f g { fst := x, snd := y }) { fst := f x, snd := g y }

    Alias of Prod.map_apply.

    theorem Prod.map_apply' {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} (f : αγ) (g : βδ) (p : Prod α β) :
    Eq (map f g p) { fst := f p.fst, snd := g p.snd }
    theorem Prod.map_fst' {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} (f : αγ) (g : βδ) :
    theorem Prod.map_snd' {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} (f : αγ) (g : βδ) :
    theorem Prod.mk_inj {α : Type u_1} {β : Type u_2} {a₁ a₂ : α} {b₁ b₂ : β} :
    Iff (Eq { fst := a₁, snd := b₁ } { fst := a₂, snd := b₂ }) (And (Eq a₁ a₂) (Eq b₁ b₂))
    @[deprecated Prod.mk_inj (since := "2025-03-06")]
    theorem Prod.mk.inj_iff {α : Type u_1} {β : Type u_2} {a₁ a₂ : α} {b₁ b₂ : β} :
    Iff (Eq { fst := a₁, snd := b₁ } { fst := a₂, snd := b₂ }) (And (Eq a₁ a₂) (Eq b₁ b₂))

    Alias of Prod.mk_inj.

    theorem Prod.mk_right_injective {α : Type u_5} {β : Type u_6} (a : α) :
    @[deprecated Prod.mk_right_injective (since := "2025-03-06")]
    theorem Prod.mk.inj_left {α : Type u_5} {β : Type u_6} (a : α) :

    Alias of Prod.mk_right_injective.

    theorem Prod.mk_left_injective {α : Type u_5} {β : Type u_6} (b : β) :
    Function.Injective fun (a : α) => { fst := a, snd := b }
    @[deprecated Prod.mk_left_injective (since := "2025-03-06")]
    theorem Prod.mk.inj_right {α : Type u_5} {β : Type u_6} (b : β) :
    Function.Injective fun (a : α) => { fst := a, snd := b }

    Alias of Prod.mk_left_injective.

    theorem Prod.mk_right_inj {α : Type u_1} {β : Type u_2} {a : α} {b₁ b₂ : β} :
    Iff (Eq { fst := a, snd := b₁ } { fst := a, snd := b₂ }) (Eq b₁ b₂)
    theorem Prod.mk_left_inj {α : Type u_1} {β : Type u_2} {a₁ a₂ : α} {b : β} :
    Iff (Eq { fst := a₁, snd := b } { fst := a₂, snd := b }) (Eq a₁ a₂)
    @[deprecated Prod.mk_right_inj (since := "2025-03-06")]
    theorem Prod.mk_inj_left {α : Type u_1} {β : Type u_2} {a : α} {b₁ b₂ : β} :
    Iff (Eq { fst := a, snd := b₁ } { fst := a, snd := b₂ }) (Eq b₁ b₂)

    Alias of Prod.mk_right_inj.

    @[deprecated Prod.mk_left_inj (since := "2025-03-06")]
    theorem Prod.mk_inj_right {α : Type u_1} {β : Type u_2} {a₁ a₂ : α} {b : β} :
    Iff (Eq { fst := a₁, snd := b } { fst := a₂, snd := b }) (Eq a₁ a₂)

    Alias of Prod.mk_left_inj.

    theorem Prod.map_def {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} {f : αγ} {g : βδ} :
    Eq (map f g) fun (p : Prod α β) => { fst := f p.fst, snd := g p.snd }
    theorem Prod.id_prod {α : Type u_1} {β : Type u_2} :
    Eq (fun (p : Prod α β) => { fst := p.fst, snd := p.snd }) id
    theorem Prod.map_iterate {α : Type u_1} {β : Type u_2} (f : αα) (g : ββ) (n : Nat) :
    Eq (Nat.iterate (map f g) n) (map (Nat.iterate f n) (Nat.iterate g n))
    theorem Prod.fst_surjective {α : Type u_1} {β : Type u_2} [h : Nonempty β] :
    theorem Prod.snd_surjective {α : Type u_1} {β : Type u_2} [h : Nonempty α] :
    theorem Function.Semiconj.swap_map {α : Type u_1} {β : Type u_2} (f : αα) (g : ββ) :
    theorem Prod.eq_iff_fst_eq_snd_eq {α : Type u_1} {β : Type u_2} {p q : Prod α β} :
    Iff (Eq p q) (And (Eq p.fst q.fst) (Eq p.snd q.snd))
    theorem Prod.fst_eq_iff {α : Type u_1} {β : Type u_2} {p : Prod α β} {x : α} :
    Iff (Eq p.fst x) (Eq p { fst := x, snd := p.snd })
    theorem Prod.snd_eq_iff {α : Type u_1} {β : Type u_2} {p : Prod α β} {x : β} :
    Iff (Eq p.snd x) (Eq p { fst := p.fst, snd := x })
    theorem Prod.lex_iff {α : Type u_1} {β : Type u_2} {r : ααProp} {s : ββProp} {x y : Prod α β} :
    Iff (Prod.Lex r s x y) (Or (r x.fst y.fst) (And (Eq x.fst y.fst) (s x.snd y.snd)))
    def Prod.Lex.decidable {α : Type u_1} {β : Type u_2} [DecidableEq α] (r : ααProp) (s : ββProp) [DecidableRel r] [DecidableRel s] :
    Equations
    Instances For
      theorem Prod.Lex.refl_left {α : Type u_1} {β : Type u_2} (r : ααProp) (s : ββProp) [IsRefl α r] (x : Prod α β) :
      Prod.Lex r s x x
      theorem Prod.instIsReflLex {α : Type u_1} {β : Type u_2} {r : ααProp} {s : ββProp} [IsRefl α r] :
      IsRefl (Prod α β) (Prod.Lex r s)
      theorem Prod.Lex.refl_right {α : Type u_1} {β : Type u_2} (r : ααProp) (s : ββProp) [IsRefl β s] (x : Prod α β) :
      Prod.Lex r s x x
      theorem Prod.instIsReflLex_1 {α : Type u_1} {β : Type u_2} {r : ααProp} {s : ββProp} [IsRefl β s] :
      IsRefl (Prod α β) (Prod.Lex r s)
      theorem Prod.isIrrefl {α : Type u_1} {β : Type u_2} {r : ααProp} {s : ββProp} [IsIrrefl α r] [IsIrrefl β s] :
      IsIrrefl (Prod α β) (Prod.Lex r s)
      theorem Prod.Lex.trans {α : Type u_1} {β : Type u_2} {r : ααProp} {s : ββProp} [IsTrans α r] [IsTrans β s] {x y z : Prod α β} :
      Prod.Lex r s x yProd.Lex r s y zProd.Lex r s x z
      theorem Prod.instIsTransLex {α : Type u_1} {β : Type u_2} {r : ααProp} {s : ββProp} [IsTrans α r] [IsTrans β s] :
      IsTrans (Prod α β) (Prod.Lex r s)
      theorem Prod.instIsAntisymmLexOfIsStrictOrder {α : Type u_1} {β : Type u_2} {r : ααProp} {s : ββProp} [IsStrictOrder α r] [IsAntisymm β s] :
      IsAntisymm (Prod α β) (Prod.Lex r s)
      theorem Prod.isTotal_left {α : Type u_1} {β : Type u_2} {r : ααProp} {s : ββProp} [IsTotal α r] :
      IsTotal (Prod α β) (Prod.Lex r s)
      theorem Prod.isTotal_right {α : Type u_1} {β : Type u_2} {r : ααProp} {s : ββProp} [_root_.IsTrichotomous α r] [IsTotal β s] :
      IsTotal (Prod α β) (Prod.Lex r s)
      theorem Prod.IsTrichotomous {α : Type u_1} {β : Type u_2} {r : ααProp} {s : ββProp} [_root_.IsTrichotomous α r] [_root_.IsTrichotomous β s] :
      theorem Prod.instIsAsymmLex {α : Type u_1} {β : Type u_2} {r : ααProp} {s : ββProp} [IsAsymm α r] [IsAsymm β s] :
      IsAsymm (Prod α β) (Prod.Lex r s)
      theorem Function.Injective.prodMap {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} {f : αγ} {g : βδ} (hf : Injective f) (hg : Injective g) :
      theorem Function.Surjective.prodMap {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} {f : αγ} {g : βδ} (hf : Surjective f) (hg : Surjective g) :
      theorem Function.Bijective.prodMap {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} {f : αγ} {g : βδ} (hf : Bijective f) (hg : Bijective g) :
      theorem Function.LeftInverse.prodMap {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} {f₁ : αβ} {g₁ : γδ} {f₂ : βα} {g₂ : δγ} (hf : LeftInverse f₁ f₂) (hg : LeftInverse g₁ g₂) :
      LeftInverse (Prod.map f₁ g₁) (Prod.map f₂ g₂)
      theorem Function.RightInverse.prodMap {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} {f₁ : αβ} {g₁ : γδ} {f₂ : βα} {g₂ : δγ} :
      RightInverse f₁ f₂RightInverse g₁ g₂RightInverse (Prod.map f₁ g₁) (Prod.map f₂ g₂)
      theorem Function.Involutive.prodMap {α : Type u_1} {β : Type u_2} {f : αα} {g : ββ} :
      theorem Prod.map_injective {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} [Nonempty α] [Nonempty β] {f : αγ} {g : βδ} :
      theorem Prod.map_surjective {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} [Nonempty γ] [Nonempty δ] {f : αγ} {g : βδ} :
      theorem Prod.map_bijective {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} [Nonempty α] [Nonempty β] {f : αγ} {g : βδ} :
      theorem Prod.map_leftInverse {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} [Nonempty β] [Nonempty δ] {f₁ : αβ} {g₁ : γδ} {f₂ : βα} {g₂ : δγ} :
      Iff (Function.LeftInverse (map f₁ g₁) (map f₂ g₂)) (And (Function.LeftInverse f₁ f₂) (Function.LeftInverse g₁ g₂))
      theorem Prod.map_rightInverse {α : Type u_1} {β : Type u_2} {γ : Type u_3} {δ : Type u_4} [Nonempty α] [Nonempty γ] {f₁ : αβ} {g₁ : γδ} {f₂ : βα} {g₂ : δγ} :
      Iff (Function.RightInverse (map f₁ g₁) (map f₂ g₂)) (And (Function.RightInverse f₁ f₂) (Function.RightInverse g₁ g₂))
      theorem Prod.map_involutive {α : Type u_1} {β : Type u_2} [Nonempty α] [Nonempty β] {f : αα} {g : ββ} :

      When true, then Prod.fst x and Prod.snd x pretty print as x.1 and x.2 rather than as x.fst and x.snd.

      Delaborator for Prod.fst x as x.1.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        Delaborator for Prod.snd x as x.2.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For