Extra facts about Prod
#
This file proves various simple lemmas about Prod
.
It also defines better delaborators for product projections.
Equations
- Eq (Prod.mk.injArrow h₁ h₂) (Prod.noConfusion h₁ h₂)
Instances For
theorem
Prod.fst_comp_mk
{α : Type u_1}
{β : Type u_2}
(x : α)
:
Eq (Function.comp fst (mk x)) (Function.const β x)
@[deprecated Prod.map_apply (since := "2024-10-17")]
theorem
Prod.map_mk
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
(f : α → β)
(g : γ → δ)
(x : α)
(y : γ)
:
Alias of Prod.map_apply
.
theorem
Prod.map_fst'
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
(f : α → γ)
(g : β → δ)
:
Eq (Function.comp fst (map f g)) (Function.comp f fst)
theorem
Prod.map_snd'
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
(f : α → γ)
(g : β → δ)
:
Eq (Function.comp snd (map f g)) (Function.comp g snd)
@[deprecated Prod.mk_inj (since := "2025-03-06")]
Alias of Prod.mk_inj
.
@[deprecated Prod.mk_right_injective (since := "2025-03-06")]
Alias of Prod.mk_right_injective
.
theorem
Prod.mk_left_injective
{α : Type u_5}
{β : Type u_6}
(b : β)
:
Function.Injective fun (a : α) => { fst := a, snd := b }
@[deprecated Prod.mk_left_injective (since := "2025-03-06")]
theorem
Prod.mk.inj_right
{α : Type u_5}
{β : Type u_6}
(b : β)
:
Function.Injective fun (a : α) => { fst := a, snd := b }
Alias of Prod.mk_left_injective
.
@[deprecated Prod.mk_right_inj (since := "2025-03-06")]
Alias of Prod.mk_right_inj
.
@[deprecated Prod.mk_left_inj (since := "2025-03-06")]
Alias of Prod.mk_left_inj
.
theorem
Prod.map_iterate
{α : Type u_1}
{β : Type u_2}
(f : α → α)
(g : β → β)
(n : Nat)
:
Eq (Nat.iterate (map f g) n) (map (Nat.iterate f n) (Nat.iterate g n))
def
Prod.Lex.decidable
{α : Type u_1}
{β : Type u_2}
[DecidableEq α]
(r : α → α → Prop)
(s : β → β → Prop)
[DecidableRel r]
[DecidableRel s]
:
DecidableRel (Prod.Lex r s)
Equations
- Eq (Prod.Lex.decidable r s x✝¹ x✝) (decidable_of_decidable_of_iff ⋯)
Instances For
theorem
Prod.instIsAntisymmLexOfIsStrictOrder
{α : Type u_1}
{β : Type u_2}
{r : α → α → Prop}
{s : β → β → Prop}
[IsStrictOrder α r]
[IsAntisymm β s]
:
IsAntisymm (Prod α β) (Prod.Lex r s)
theorem
Prod.IsTrichotomous
{α : Type u_1}
{β : Type u_2}
{r : α → α → Prop}
{s : β → β → Prop}
[_root_.IsTrichotomous α r]
[_root_.IsTrichotomous β s]
:
_root_.IsTrichotomous (Prod α β) (Prod.Lex r s)
theorem
Function.Surjective.prodMap
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
{f : α → γ}
{g : β → δ}
(hf : Surjective f)
(hg : Surjective g)
:
Surjective (Prod.map f g)
theorem
Function.LeftInverse.prodMap
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
{f₁ : α → β}
{g₁ : γ → δ}
{f₂ : β → α}
{g₂ : δ → γ}
(hf : LeftInverse f₁ f₂)
(hg : LeftInverse g₁ g₂)
:
LeftInverse (Prod.map f₁ g₁) (Prod.map f₂ g₂)
theorem
Function.RightInverse.prodMap
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
{f₁ : α → β}
{g₁ : γ → δ}
{f₂ : β → α}
{g₂ : δ → γ}
:
RightInverse f₁ f₂ → RightInverse g₁ g₂ → RightInverse (Prod.map f₁ g₁) (Prod.map f₂ g₂)
theorem
Function.Involutive.prodMap
{α : Type u_1}
{β : Type u_2}
{f : α → α}
{g : β → β}
:
Involutive f → Involutive g → Involutive (Prod.map f g)
theorem
Prod.map_injective
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
[Nonempty α]
[Nonempty β]
{f : α → γ}
{g : β → δ}
:
Iff (Function.Injective (map f g)) (And (Function.Injective f) (Function.Injective g))
theorem
Prod.map_surjective
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
[Nonempty γ]
[Nonempty δ]
{f : α → γ}
{g : β → δ}
:
Iff (Function.Surjective (map f g)) (And (Function.Surjective f) (Function.Surjective g))
theorem
Prod.map_bijective
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
[Nonempty α]
[Nonempty β]
{f : α → γ}
{g : β → δ}
:
Iff (Function.Bijective (map f g)) (And (Function.Bijective f) (Function.Bijective g))
theorem
Prod.map_leftInverse
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
[Nonempty β]
[Nonempty δ]
{f₁ : α → β}
{g₁ : γ → δ}
{f₂ : β → α}
{g₂ : δ → γ}
:
Iff (Function.LeftInverse (map f₁ g₁) (map f₂ g₂)) (And (Function.LeftInverse f₁ f₂) (Function.LeftInverse g₁ g₂))
theorem
Prod.map_rightInverse
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
[Nonempty α]
[Nonempty γ]
{f₁ : α → β}
{g₁ : γ → δ}
{f₂ : β → α}
{g₂ : δ → γ}
:
Iff (Function.RightInverse (map f₁ g₁) (map f₂ g₂)) (And (Function.RightInverse f₁ f₂) (Function.RightInverse g₁ g₂))
theorem
Prod.map_involutive
{α : Type u_1}
{β : Type u_2}
[Nonempty α]
[Nonempty β]
{f : α → α}
{g : β → β}
:
Iff (Function.Involutive (map f g)) (And (Function.Involutive f) (Function.Involutive g))
Delaborator for Prod.fst x
as x.1
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Delaborator for Prod.snd x
as x.2
.
Equations
- One or more equations did not get rendered due to their size.