Extra facts about Prod
#
This file proves various simple lemmas about Prod
.
It also defines better delaborators for product projections.
Equations
- Prod.mk.injArrow h₁ h₂ = Prod.noConfusion h₁ h₂
Instances For
@[simp]
theorem
Prod.fst_comp_mk
{α : Type u_1}
{β : Type u_2}
(x : α)
:
Prod.fst ∘ Prod.mk x = Function.const β x
@[deprecated Prod.map_apply]
theorem
Prod.map_mk
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
(f : α → β)
(g : γ → δ)
(x : α)
(y : γ)
:
Alias of Prod.map_apply
.
theorem
Prod.mk.inj_right
{α : Type u_5}
{β : Type u_6}
(b : β)
:
Function.Injective fun (a : α) => (a, b)
theorem
Prod.fst_surjective
{α : Type u_1}
{β : Type u_2}
[h : Nonempty β]
:
Function.Surjective Prod.fst
theorem
Prod.snd_surjective
{α : Type u_1}
{β : Type u_2}
[h : Nonempty α]
:
Function.Surjective Prod.snd
theorem
Prod.fst_injective
{α : Type u_1}
{β : Type u_2}
[Subsingleton β]
:
Function.Injective Prod.fst
theorem
Prod.snd_injective
{α : Type u_1}
{β : Type u_2}
[Subsingleton α]
:
Function.Injective Prod.snd
@[simp]
theorem
Prod.swap_leftInverse
{α : Type u_1}
{β : Type u_2}
:
Function.LeftInverse Prod.swap Prod.swap
@[simp]
theorem
Prod.swap_rightInverse
{α : Type u_1}
{β : Type u_2}
:
Function.RightInverse Prod.swap Prod.swap
theorem
Function.Semiconj.swap_map
{α : Type u_1}
{β : Type u_2}
(f : α → α)
(g : β → β)
:
Function.Semiconj Prod.swap (Prod.map f g) (Prod.map g f)
instance
Prod.Lex.decidable
{α : Type u_1}
{β : Type u_2}
[DecidableEq α]
(r : α → α → Prop)
(s : β → β → Prop)
[DecidableRel r]
[DecidableRel s]
:
DecidableRel (Prod.Lex r s)
Equations
- Prod.Lex.decidable r s x✝¹ x✝ = decidable_of_decidable_of_iff ⋯
instance
Prod.instIsAntisymmLexOfIsStrictOrder
{α : Type u_1}
{β : Type u_2}
{r : α → α → Prop}
{s : β → β → Prop}
[IsStrictOrder α r]
[IsAntisymm β s]
:
IsAntisymm (α × β) (Prod.Lex r s)
instance
Prod.IsTrichotomous
{α : Type u_1}
{β : Type u_2}
{r : α → α → Prop}
{s : β → β → Prop}
[IsTrichotomous α r]
[IsTrichotomous β s]
:
IsTrichotomous (α × β) (Prod.Lex r s)
theorem
Function.Injective.prodMap
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
{f : α → γ}
{g : β → δ}
(hf : Function.Injective f)
(hg : Function.Injective g)
:
Function.Injective (Prod.map f g)
theorem
Function.Surjective.prodMap
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
{f : α → γ}
{g : β → δ}
(hf : Function.Surjective f)
(hg : Function.Surjective g)
:
Function.Surjective (Prod.map f g)
theorem
Function.Bijective.prodMap
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
{f : α → γ}
{g : β → δ}
(hf : Function.Bijective f)
(hg : Function.Bijective g)
:
Function.Bijective (Prod.map f g)
theorem
Function.LeftInverse.prodMap
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
{f₁ : α → β}
{g₁ : γ → δ}
{f₂ : β → α}
{g₂ : δ → γ}
(hf : Function.LeftInverse f₁ f₂)
(hg : Function.LeftInverse g₁ g₂)
:
Function.LeftInverse (Prod.map f₁ g₁) (Prod.map f₂ g₂)
theorem
Function.RightInverse.prodMap
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
{f₁ : α → β}
{g₁ : γ → δ}
{f₂ : β → α}
{g₂ : δ → γ}
:
Function.RightInverse f₁ f₂ → Function.RightInverse g₁ g₂ → Function.RightInverse (Prod.map f₁ g₁) (Prod.map f₂ g₂)
theorem
Function.Involutive.prodMap
{α : Type u_1}
{β : Type u_2}
{f : α → α}
{g : β → β}
:
Function.Involutive f → Function.Involutive g → Function.Involutive (Prod.map f g)
@[deprecated Function.Injective.prodMap]
theorem
Function.Injective.Prod_map
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
{f : α → γ}
{g : β → δ}
(hf : Function.Injective f)
(hg : Function.Injective g)
:
Function.Injective (Prod.map f g)
Alias of Function.Injective.prodMap
.
@[deprecated Function.Surjective.prodMap]
theorem
Function.Surjective.Prod_map
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
{f : α → γ}
{g : β → δ}
(hf : Function.Surjective f)
(hg : Function.Surjective g)
:
Function.Surjective (Prod.map f g)
Alias of Function.Surjective.prodMap
.
@[deprecated Function.Bijective.prodMap]
theorem
Function.Bijective.Prod_map
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
{f : α → γ}
{g : β → δ}
(hf : Function.Bijective f)
(hg : Function.Bijective g)
:
Function.Bijective (Prod.map f g)
Alias of Function.Bijective.prodMap
.
@[deprecated Function.LeftInverse.prodMap]
theorem
Function.LeftInverse.Prod_map
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
{f₁ : α → β}
{g₁ : γ → δ}
{f₂ : β → α}
{g₂ : δ → γ}
(hf : Function.LeftInverse f₁ f₂)
(hg : Function.LeftInverse g₁ g₂)
:
Function.LeftInverse (Prod.map f₁ g₁) (Prod.map f₂ g₂)
Alias of Function.LeftInverse.prodMap
.
@[deprecated Function.RightInverse.prodMap]
theorem
Function.RightInverse.Prod_map
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
{f₁ : α → β}
{g₁ : γ → δ}
{f₂ : β → α}
{g₂ : δ → γ}
:
Function.RightInverse f₁ f₂ → Function.RightInverse g₁ g₂ → Function.RightInverse (Prod.map f₁ g₁) (Prod.map f₂ g₂)
Alias of Function.RightInverse.prodMap
.
@[deprecated Function.Involutive.prodMap]
theorem
Function.Involutive.Prod_map
{α : Type u_1}
{β : Type u_2}
{f : α → α}
{g : β → β}
:
Function.Involutive f → Function.Involutive g → Function.Involutive (Prod.map f g)
Alias of Function.Involutive.prodMap
.
@[simp]
theorem
Prod.map_leftInverse
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
[Nonempty β]
[Nonempty δ]
{f₁ : α → β}
{g₁ : γ → δ}
{f₂ : β → α}
{g₂ : δ → γ}
:
Function.LeftInverse (Prod.map f₁ g₁) (Prod.map f₂ g₂) ↔ Function.LeftInverse f₁ f₂ ∧ Function.LeftInverse g₁ g₂
@[simp]
theorem
Prod.map_rightInverse
{α : Type u_1}
{β : Type u_2}
{γ : Type u_3}
{δ : Type u_4}
[Nonempty α]
[Nonempty γ]
{f₁ : α → β}
{g₁ : γ → δ}
{f₂ : β → α}
{g₂ : δ → γ}
:
Function.RightInverse (Prod.map f₁ g₁) (Prod.map f₂ g₂) ↔ Function.RightInverse f₁ f₂ ∧ Function.RightInverse g₁ g₂
@[simp]
theorem
Prod.map_involutive
{α : Type u_1}
{β : Type u_2}
[Nonempty α]
[Nonempty β]
{f : α → α}
{g : β → β}
:
Delaborator for Prod.fst x
as x.1
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Delaborator for Prod.snd x
as x.2
.
Equations
- One or more equations did not get rendered due to their size.