Documentation

Mathlib.Data.Rat.Cast.CharZero

Casts of rational numbers into characteristic zero fields (or division rings). #

theorem Rat.cast_injective {α : Type u_3} [DivisionRing α] [CharZero α] :

Stacks Tag 09FR (Characteristic zero case.)

@[simp]
theorem Rat.cast_inj {α : Type u_3} [DivisionRing α] [CharZero α] {p q : } :
p = q p = q
@[simp]
theorem Rat.cast_eq_zero {α : Type u_3} [DivisionRing α] [CharZero α] {p : } :
p = 0 p = 0
theorem Rat.cast_ne_zero {α : Type u_3} [DivisionRing α] [CharZero α] {p : } :
p 0 p 0
@[simp]
theorem Rat.cast_add {α : Type u_3} [DivisionRing α] [CharZero α] (p q : ) :
(p + q) = p + q
@[simp]
theorem Rat.cast_sub {α : Type u_3} [DivisionRing α] [CharZero α] (p q : ) :
(p - q) = p - q
@[simp]
theorem Rat.cast_mul {α : Type u_3} [DivisionRing α] [CharZero α] (p q : ) :
(p * q) = p * q
def Rat.castHom (α : Type u_3) [DivisionRing α] [CharZero α] :

Coercion ℚ → α as a RingHom.

Equations
  • Rat.castHom α = { toFun := Rat.cast, map_one' := , map_mul' := , map_zero' := , map_add' := }
Instances For
    @[simp]
    theorem Rat.coe_castHom {α : Type u_3} [DivisionRing α] [CharZero α] :
    (Rat.castHom α) = Rat.cast
    @[deprecated Rat.coe_castHom]
    theorem Rat.coe_cast_hom {α : Type u_3} [DivisionRing α] [CharZero α] :
    (Rat.castHom α) = Rat.cast

    Alias of Rat.coe_castHom.

    @[simp]
    theorem Rat.cast_inv {α : Type u_3} [DivisionRing α] [CharZero α] (p : ) :
    p⁻¹ = (↑p)⁻¹
    @[simp]
    theorem Rat.cast_div {α : Type u_3} [DivisionRing α] [CharZero α] (p q : ) :
    (p / q) = p / q
    @[simp]
    theorem Rat.cast_zpow {α : Type u_3} [DivisionRing α] [CharZero α] (p : ) (n : ) :
    (p ^ n) = p ^ n
    theorem Rat.cast_mk {α : Type u_3} [DivisionRing α] [CharZero α] (a b : ) :
    (Rat.divInt a b) = a / b
    @[simp]
    theorem NNRat.cast_inj {α : Type u_3} [DivisionSemiring α] [CharZero α] {p q : ℚ≥0} :
    p = q p = q
    @[simp]
    theorem NNRat.cast_eq_zero {α : Type u_3} [DivisionSemiring α] [CharZero α] {q : ℚ≥0} :
    q = 0 q = 0
    theorem NNRat.cast_ne_zero {α : Type u_3} [DivisionSemiring α] [CharZero α] {q : ℚ≥0} :
    q 0 q 0
    @[simp]
    theorem NNRat.cast_add {α : Type u_3} [DivisionSemiring α] [CharZero α] (p q : ℚ≥0) :
    (p + q) = p + q
    @[simp]
    theorem NNRat.cast_mul {α : Type u_3} [DivisionSemiring α] [CharZero α] (p q : ℚ≥0) :
    (p * q) = p * q

    Coercion ℚ≥0 → α as a RingHom.

    Equations
    • NNRat.castHom α = { toFun := NNRat.cast, map_one' := , map_mul' := , map_zero' := , map_add' := }
    Instances For
      @[simp]
      theorem NNRat.coe_castHom {α : Type u_3} [DivisionSemiring α] [CharZero α] :
      (NNRat.castHom α) = NNRat.cast
      @[simp]
      theorem NNRat.cast_inv {α : Type u_3} [DivisionSemiring α] [CharZero α] (p : ℚ≥0) :
      p⁻¹ = (↑p)⁻¹
      @[simp]
      theorem NNRat.cast_div {α : Type u_3} [DivisionSemiring α] [CharZero α] (p q : ℚ≥0) :
      (p / q) = p / q
      @[simp]
      theorem NNRat.cast_zpow {α : Type u_3} [DivisionSemiring α] [CharZero α] (q : ℚ≥0) (p : ) :
      (q ^ p) = q ^ p
      @[simp]
      theorem NNRat.cast_divNat {α : Type u_3} [DivisionSemiring α] [CharZero α] (a b : ) :
      (NNRat.divNat a b) = a / b