Documentation

Mathlib.Data.Rat.Defs

Basics for the Rational Numbers #

Summary #

We define the integral domain structure on and prove basic lemmas about it. The definition of the field structure on will be done in Mathlib.Data.Rat.Basic once the Field class has been defined.

Main Definitions #

Notations #

theorem Rat.pos (a : ) :
0 < a.den
@[simp]
theorem Rat.ofInt_eq_cast (n : ) :
Rat.ofInt n = n
@[simp]
theorem Rat.num_ofNat (n : ) :
@[simp]
theorem Rat.den_ofNat (n : ) :
(OfNat.ofNat n).den = 1
@[simp]
theorem Rat.coe_int_num (n : ) :
(n).num = n
@[simp]
theorem Rat.coe_int_den (n : ) :
(n).den = 1
theorem Rat.mkRat_eq (n : ) (d : ) :
mkRat n d = Rat.divInt n d
@[simp]
theorem Rat.zero_mk (d : ) (h : d 0) (w : Nat.Coprime (Int.natAbs 0) d) :
{ num := 0, den := d, den_nz := h, reduced := w } = 0
@[simp]
theorem Rat.num_eq_zero {q : } :
q.num = 0 q = 0
theorem Rat.num_ne_zero {q : } :
q.num 0 q 0
@[simp]
theorem Rat.den_ne_zero (q : ) :
q.den 0
@[simp]
theorem Rat.divInt_eq_zero {a : } {b : } (b0 : b 0) :
Rat.divInt a b = 0 a = 0
theorem Rat.divInt_ne_zero {a : } {b : } (b0 : b 0) :
Rat.divInt a b 0 a 0
theorem Rat.normalize_eq_mk' (n : ) (d : ) (h : d 0) (c : Nat.gcd (Int.natAbs n) d = 1) :
Rat.normalize n d h = { num := n, den := d, den_nz := h, reduced := c }
@[simp]
theorem Rat.mkRat_num_den' (a : ) :
mkRat a.num a.den = a

Alias of Rat.mkRat_self.

theorem Rat.num_divInt_den (q : ) :
Rat.divInt q.num q.den = q
theorem Rat.mk'_eq_divInt {n : } {d : } {h : d 0} {c : Nat.Coprime (Int.natAbs n) d} :
{ num := n, den := d, den_nz := h, reduced := c } = Rat.divInt n d
@[simp]
theorem Rat.divInt_self' {n : } (hn : n 0) :
def Rat.numDenCasesOn {C : Sort u} (a : ) :
((n : ) → (d : ) → 0 < dNat.Coprime (Int.natAbs n) dC (Rat.divInt n d))C a

Define a (dependent) function or prove ∀ r : ℚ, p r by dealing with rational numbers of the form n /. d with 0 < d and coprime n, d.

Equations
  • Rat.numDenCasesOn x✝ x = match x✝, x with | { num := n, den := d, den_nz := h, reduced := c }, H => Eq.mpr (H n d c)
Instances For
    def Rat.numDenCasesOn' {C : Sort u} (a : ) (H : (n : ) → (d : ) → d 0C (Rat.divInt n d)) :
    C a

    Define a (dependent) function or prove ∀ r : ℚ, p r by dealing with rational numbers of the form n /. d with d ≠ 0.

    Equations
    Instances For
      def Rat.numDenCasesOn'' {C : Sort u} (a : ) (H : (n : ) → (d : ) → (nz : d 0) → (red : Nat.Coprime (Int.natAbs n) d) → C { num := n, den := d, den_nz := nz, reduced := red }) :
      C a

      Define a (dependent) function or prove ∀ r : ℚ, p r by dealing with rational numbers of the form mk' n d with d ≠ 0.

      Equations
      Instances For
        theorem Rat.lift_binop_eq (f : ) (f₁ : ) (f₂ : ) (fv : ∀ {n₁ : } {d₁ : } {h₁ : d₁ 0} {c₁ : Nat.Coprime (Int.natAbs n₁) d₁} {n₂ : } {d₂ : } {h₂ : d₂ 0} {c₂ : Nat.Coprime (Int.natAbs n₂) d₂}, f { num := n₁, den := d₁, den_nz := h₁, reduced := c₁ } { num := n₂, den := d₂, den_nz := h₂, reduced := c₂ } = Rat.divInt (f₁ n₁ (d₁) n₂ d₂) (f₂ n₁ (d₁) n₂ d₂)) (f0 : ∀ {n₁ d₁ n₂ d₂ : }, d₁ 0d₂ 0f₂ n₁ d₁ n₂ d₂ 0) (a : ) (b : ) (c : ) (d : ) (b0 : b 0) (d0 : d 0) (H : ∀ {n₁ d₁ n₂ d₂ : }, a * d₁ = n₁ * bc * d₂ = n₂ * df₁ n₁ d₁ n₂ d₂ * f₂ a b c d = f₁ a b c d * f₂ n₁ d₁ n₂ d₂) :
        f (Rat.divInt a b) (Rat.divInt c d) = Rat.divInt (f₁ a b c d) (f₂ a b c d)
        @[deprecated Rat.divInt_add_divInt]
        theorem Rat.add_def'' {a : } {b : } {c : } {d : } (b0 : b 0) (d0 : d 0) :
        Rat.divInt a b + Rat.divInt c d = Rat.divInt (a * d + c * b) (b * d)
        theorem Rat.neg_def (q : ) :
        -q = Rat.divInt (-q.num) q.den
        @[simp]
        theorem Rat.divInt_neg (n : ) (d : ) :
        @[deprecated Rat.divInt_neg]
        theorem Rat.divInt_neg_den (n : ) (d : ) :

        Alias of Rat.divInt_neg.

        @[deprecated Rat.divInt_sub_divInt]
        theorem Rat.sub_def'' {a : } {b : } {c : } {d : } (b0 : b 0) (d0 : d 0) :
        Rat.divInt a b - Rat.divInt c d = Rat.divInt (a * d - c * b) (b * d)
        @[simp]
        theorem Rat.divInt_mul_divInt' (n₁ : ) (d₁ : ) (n₂ : ) (d₂ : ) :
        Rat.divInt n₁ d₁ * Rat.divInt n₂ d₂ = Rat.divInt (n₁ * n₂) (d₁ * d₂)
        theorem Rat.mul_def' (q : ) (r : ) :
        q * r = mkRat (q.num * r.num) (q.den * r.den)
        @[deprecated Rat.mul_def']
        theorem Rat.mul_num_den (q : ) (r : ) :
        q * r = mkRat (q.num * r.num) (q.den * r.den)

        Alias of Rat.mul_def'.

        Equations
        @[simp]
        theorem Rat.inv_divInt' (a : ) (b : ) :
        @[simp]
        theorem Rat.inv_mkRat (a : ) (b : ) :
        (mkRat a b)⁻¹ = Rat.divInt (b) a
        theorem Rat.inv_def' (q : ) :
        q⁻¹ = Rat.divInt (q.den) q.num
        @[simp]
        theorem Rat.divInt_div_divInt (n₁ : ) (d₁ : ) (n₂ : ) (d₂ : ) :
        Rat.divInt n₁ d₁ / Rat.divInt n₂ d₂ = Rat.divInt (n₁ * d₂) (d₁ * n₂)
        theorem Rat.div_def' (q : ) (r : ) :
        q / r = Rat.divInt (q.num * r.den) (q.den * r.num)
        @[deprecated Rat.div_def']
        theorem Rat.div_num_den (q : ) (r : ) :
        q / r = Rat.divInt (q.num * r.den) (q.den * r.num)

        Alias of Rat.div_def'.

        theorem Rat.add_zero (a : ) :
        a + 0 = a
        theorem Rat.zero_add (a : ) :
        0 + a = a
        theorem Rat.add_comm (a : ) (b : ) :
        a + b = b + a
        theorem Rat.add_assoc (a : ) (b : ) (c : ) :
        a + b + c = a + (b + c)
        theorem Rat.add_left_neg (a : ) :
        -a + a = 0
        @[deprecated Rat.zero_divInt]
        @[simp]
        theorem Rat.divInt_one (n : ) :
        Rat.divInt n 1 = n
        @[simp]
        theorem Rat.mkRat_one (n : ) :
        mkRat n 1 = n
        @[deprecated Rat.divInt_one]
        theorem Rat.mul_assoc (a : ) (b : ) (c : ) :
        a * b * c = a * (b * c)
        theorem Rat.add_mul (a : ) (b : ) (c : ) :
        (a + b) * c = a * c + b * c
        theorem Rat.mul_add (a : ) (b : ) (c : ) :
        a * (b + c) = a * b + a * c
        theorem Rat.mul_inv_cancel (a : ) :
        a 0a * a⁻¹ = 1
        theorem Rat.inv_mul_cancel (a : ) (h : a 0) :
        a⁻¹ * a = 1

        At this point in the import hierarchy we have not defined the Field typeclass. Instead we'll instantiate CommRing and CommGroupWithZero at this point. The Rat.instField instance and any field-specific lemmas can be found in Mathlib.Data.Rat.Basic.

        Equations
        • One or more equations did not get rendered due to their size.
        Equations
        Equations
        Equations
        Equations
        Equations
        Equations
        Equations
        Equations
        Equations
        theorem Rat.eq_iff_mul_eq_mul {p : } {q : } :
        p = q p.num * q.den = q.num * p.den
        @[simp]
        theorem Rat.den_neg_eq_den (q : ) :
        (-q).den = q.den
        @[simp]
        theorem Rat.num_neg_eq_neg_num (q : ) :
        (-q).num = -q.num
        @[simp]
        theorem Rat.num_zero :
        0.num = 0
        @[simp]
        theorem Rat.den_zero :
        0.den = 1
        theorem Rat.zero_of_num_zero {q : } (hq : q.num = 0) :
        q = 0
        theorem Rat.zero_iff_num_zero {q : } :
        q = 0 q.num = 0
        @[simp]
        theorem Rat.num_one :
        1.num = 1
        @[simp]
        theorem Rat.den_one :
        1.den = 1
        theorem Rat.mk_num_ne_zero_of_ne_zero {q : } {n : } {d : } (hq : q 0) (hqnd : q = Rat.divInt n d) :
        n 0
        theorem Rat.mk_denom_ne_zero_of_ne_zero {q : } {n : } {d : } (hq : q 0) (hqnd : q = Rat.divInt n d) :
        d 0
        theorem Rat.divInt_ne_zero_of_ne_zero {n : } {d : } (h : n 0) (hd : d 0) :
        theorem Rat.add_divInt (a : ) (b : ) (c : ) :
        theorem Rat.divInt_eq_div (n : ) (d : ) :
        Rat.divInt n d = n / d
        theorem Rat.divInt_mul_divInt_cancel {x : } (hx : x 0) (n : ) (d : ) :
        theorem Rat.divInt_div_divInt_cancel_left {x : } (hx : x 0) (n : ) (d : ) :
        theorem Rat.divInt_div_divInt_cancel_right {x : } (hx : x 0) (n : ) (d : ) :
        theorem Rat.intCast_div_eq_divInt {n : } {d : } :
        n / d = Rat.divInt n d
        theorem Rat.num_div_den (r : ) :
        r.num / r.den = r
        theorem Rat.coe_int_num_of_den_eq_one {q : } (hq : q.den = 1) :
        q.num = q
        theorem Rat.eq_num_of_isInt {q : } (h : Rat.isInt q = true) :
        q = q.num
        theorem Rat.den_eq_one_iff (r : ) :
        r.den = 1 r.num = r
        instance Rat.canLift :
        CanLift Int.cast fun (q : ) => q.den = 1
        Equations
        theorem Rat.natCast_eq_divInt (n : ) :
        n = Rat.divInt (n) 1
        @[deprecated Rat.intCast_eq_divInt]
        theorem Rat.coe_int_eq_divInt (z : ) :
        z = Rat.divInt z 1

        Alias of Rat.intCast_eq_divInt.

        @[deprecated Rat.intCast_div_eq_divInt]
        theorem Rat.coe_int_div_eq_divInt {n : } {d : } :
        n / d = Rat.divInt n d

        Alias of Rat.intCast_div_eq_divInt.

        @[deprecated Rat.natCast_eq_divInt]
        theorem Rat.coe_nat_eq_divInt (n : ) :
        n = Rat.divInt (n) 1

        Alias of Rat.natCast_eq_divInt.

        @[simp]
        theorem Rat.num_natCast (n : ) :
        (n).num = n
        @[simp]
        theorem Rat.den_natCast (n : ) :
        (n).den = 1
        theorem Rat.num_intCast (a : ) :
        (a).num = a

        Alias of Rat.intCast_num.

        theorem Rat.den_intCast (a : ) :
        (a).den = 1

        Alias of Rat.intCast_den.

        theorem Rat.coe_int_inj (m : ) (n : ) :
        m = n m = n
        theorem Rat.mkRat_eq_div (n : ) (d : ) :
        mkRat n d = n / d