Documentation

Mathlib.Data.Set.Dissipate

Dissipate #

The function dissipate takes s : α → Set β with LE α and returns ⋂ y ≤ x, s y. It is related to accumulate s := ⋃ y ≤ x, s y.

def Set.dissipate {α : Type u_1} {β : Type u_2} [LE α] (s : αSet β) (x : α) :
Set β

dissipate s is the intersection of s y for y ≤ x.

Equations
Instances For
    theorem Set.dissipate_def {α : Type u_1} {β : Type u_2} {s : αSet β} [LE α] {x : α} :
    dissipate s x = ⋂ (y : α), ⋂ (_ : y x), s y
    @[simp]
    theorem Set.mem_dissipate {α : Type u_1} {β : Type u_2} {s : αSet β} [LE α] {x : α} {z : β} :
    z dissipate s x yx, z s y
    theorem Set.dissipate_subset {α : Type u_1} {β : Type u_2} {s : αSet β} [LE α] {x y : α} (hy : y x) :
    dissipate s x s y
    theorem Set.iInter_subset_dissipate {α : Type u_1} {β : Type u_2} {s : αSet β} [LE α] (x : α) :
    ⋂ (i : α), s i dissipate s x
    theorem Set.antitone_dissipate {α : Type u_1} {β : Type u_2} {s : αSet β} [Preorder α] :
    theorem Set.dissipate_subset_dissipate {α : Type u_1} {β : Type u_2} {s : αSet β} [Preorder α] {x y : α} (h : y x) :
    @[simp]
    theorem Set.biInter_dissipate {α : Type u_1} {β : Type u_2} [Preorder α] {s : αSet β} {x : α} :
    ⋂ (y : α), ⋂ (_ : y x), dissipate s y = dissipate s x
    @[simp]
    theorem Set.iInter_dissipate {α : Type u_1} {β : Type u_2} {s : αSet β} [Preorder α] :
    ⋂ (x : α), dissipate s x = ⋂ (x : α), s x
    @[simp]
    theorem Set.dissipate_bot {α : Type u_1} {β : Type u_2} [PartialOrder α] [OrderBot α] (s : αSet β) :
    @[simp]
    theorem Set.dissipate_zero_nat {β : Type u_2} (s : Set β) :
    dissipate s 0 = s 0
    @[simp]
    theorem Set.dissipate_succ {α : Type u_1} (s : Set α) (n : ) :
    dissipate s (n + 1) = dissipate s n s (n + 1)