Documentation

Mathlib.Dynamics.Ergodic.Ergodic

Ergodic maps and measures #

Let f : α → α be measure preserving with respect to a measure μ. We say f is ergodic with respect to μ (or μ is ergodic with respect to f) if the only measurable sets s such that f⁻¹' s = s are either almost empty or full.

In this file we define ergodic maps / measures together with quasi-ergodic maps / measures and provide some basic API. Quasi-ergodicity is a weaker condition than ergodicity for which the measure preserving condition is relaxed to quasi measure preserving.

Main definitions: #

structure PreErgodic {α : Type u_1} {m : MeasurableSpace α} (f : αα) (μ : autoParam (MeasureTheory.Measure α) _auto✝) :

A map f : α → α is said to be pre-ergodic with respect to a measure μ if any measurable strictly invariant set is either almost empty or full.

Instances For
    structure Ergodic {α : Type u_1} {m : MeasurableSpace α} (f : αα) (μ : autoParam (MeasureTheory.Measure α) _auto✝) extends MeasureTheory.MeasurePreserving , PreErgodic :

    A map f : α → α is said to be ergodic with respect to a measure μ if it is measure preserving and pre-ergodic.

      Instances For

        A map f : α → α is said to be quasi ergodic with respect to a measure μ if it is quasi measure preserving and pre-ergodic.

          Instances For
            theorem PreErgodic.measure_self_or_compl_eq_zero {α : Type u_1} {m : MeasurableSpace α} {f : αα} {s : Set α} {μ : MeasureTheory.Measure α} (hf : PreErgodic f μ) (hs : MeasurableSet s) (hs' : f ⁻¹' s = s) :
            μ s = 0 μ s = 0
            theorem PreErgodic.ae_mem_or_ae_nmem {α : Type u_1} {m : MeasurableSpace α} {f : αα} {s : Set α} {μ : MeasureTheory.Measure α} (hf : PreErgodic f μ) (hsm : MeasurableSet s) (hs : f ⁻¹' s = s) :
            (∀ᵐ (x : α) ∂μ, x s) ∀ᵐ (x : α) ∂μ, xs
            theorem PreErgodic.prob_eq_zero_or_one {α : Type u_1} {m : MeasurableSpace α} {f : αα} {s : Set α} {μ : MeasureTheory.Measure α} [MeasureTheory.IsProbabilityMeasure μ] (hf : PreErgodic f μ) (hs : MeasurableSet s) (hs' : f ⁻¹' s = s) :
            μ s = 0 μ s = 1

            On a probability space, the (pre)ergodicity condition is a zero one law.

            theorem PreErgodic.of_iterate {α : Type u_1} {m : MeasurableSpace α} {f : αα} {μ : MeasureTheory.Measure α} (n : ) (hf : PreErgodic f^[n] μ) :
            theorem MeasureTheory.MeasurePreserving.preErgodic_of_preErgodic_conjugate {α : Type u_1} {m : MeasurableSpace α} {f : αα} {μ : MeasureTheory.Measure α} {β : Type u_2} {m' : MeasurableSpace β} {μ' : MeasureTheory.Measure β} {g : αβ} (hg : MeasureTheory.MeasurePreserving g μ μ') (hf : PreErgodic f μ) {f' : ββ} (h_comm : g f = f' g) :
            PreErgodic f' μ'
            theorem MeasureTheory.MeasurePreserving.preErgodic_conjugate_iff {α : Type u_1} {m : MeasurableSpace α} {f : αα} {μ : MeasureTheory.Measure α} {β : Type u_2} {m' : MeasurableSpace β} {μ' : MeasureTheory.Measure β} {e : α ≃ᵐ β} (h : MeasureTheory.MeasurePreserving (e) μ μ') :
            PreErgodic (e f e.symm) μ' PreErgodic f μ
            theorem MeasureTheory.MeasurePreserving.ergodic_conjugate_iff {α : Type u_1} {m : MeasurableSpace α} {f : αα} {μ : MeasureTheory.Measure α} {β : Type u_2} {m' : MeasurableSpace β} {μ' : MeasureTheory.Measure β} {e : α ≃ᵐ β} (h : MeasureTheory.MeasurePreserving (e) μ μ') :
            Ergodic (e f e.symm) μ' Ergodic f μ

            For a quasi ergodic map, sets that are almost invariant (rather than strictly invariant) are still either almost empty or full.

            For a quasi ergodic map, sets that are almost invariant (rather than strictly invariant) are still either almost empty or full.

            theorem QuasiErgodic.ae_mem_or_ae_nmem₀ {α : Type u_1} {m : MeasurableSpace α} {f : αα} {s : Set α} {μ : MeasureTheory.Measure α} (hf : QuasiErgodic f μ) (hsm : MeasureTheory.NullMeasurableSet s μ) (hs : f ⁻¹' s =ᶠ[MeasureTheory.Measure.ae μ] s) :
            (∀ᵐ (x : α) ∂μ, x s) ∀ᵐ (x : α) ∂μ, xs

            For a quasi ergodic map, sets that are almost invariant (rather than strictly invariant) are still either almost empty or full.

            theorem Ergodic.quasiErgodic {α : Type u_1} {m : MeasurableSpace α} {f : αα} {μ : MeasureTheory.Measure α} (hf : Ergodic f μ) :

            An ergodic map is quasi ergodic.