Documentation

Mathlib.Dynamics.Ergodic.Ergodic

Ergodic maps and measures #

Let f : α → α be measure preserving with respect to a measure μ. We say f is ergodic with respect to μ (or μ is ergodic with respect to f) if the only measurable sets s such that f⁻¹' s = s are either almost empty or full.

In this file we define ergodic maps / measures together with quasi-ergodic maps / measures and provide some basic API. Quasi-ergodicity is a weaker condition than ergodicity for which the measure preserving condition is relaxed to quasi measure preserving.

Main definitions: #

structure PreErgodic {α : Type u_1} {m : MeasurableSpace α} (f : αα) (μ : MeasureTheory.Measure α := by volume_tac) :

A map f : α → α is said to be pre-ergodic with respect to a measure μ if any measurable strictly invariant set is either almost empty or full.

Instances For
    structure Ergodic {α : Type u_1} {m : MeasurableSpace α} (f : αα) (μ : MeasureTheory.Measure α := by volume_tac) extends MeasureTheory.MeasurePreserving f μ μ, PreErgodic f μ :

    A map f : α → α is said to be ergodic with respect to a measure μ if it is measure preserving and pre-ergodic.

    Instances For
      structure QuasiErgodic {α : Type u_1} {m : MeasurableSpace α} (f : αα) (μ : MeasureTheory.Measure α := by volume_tac) extends MeasureTheory.Measure.QuasiMeasurePreserving f μ μ, PreErgodic f μ :

      A map f : α → α is said to be quasi ergodic with respect to a measure μ if it is quasi measure preserving and pre-ergodic.

      Instances For
        theorem PreErgodic.ae_empty_or_univ {α : Type u_1} {m : MeasurableSpace α} {s : Set α} {f : αα} {μ : MeasureTheory.Measure α} (hf : PreErgodic f μ) (hs : MeasurableSet s) (hfs : f ⁻¹' s = s) :
        theorem PreErgodic.measure_self_or_compl_eq_zero {α : Type u_1} {m : MeasurableSpace α} {s : Set α} {f : αα} {μ : MeasureTheory.Measure α} (hf : PreErgodic f μ) (hs : MeasurableSet s) (hs' : f ⁻¹' s = s) :
        μ s = 0 μ s = 0
        theorem PreErgodic.ae_mem_or_ae_nmem {α : Type u_1} {m : MeasurableSpace α} {s : Set α} {f : αα} {μ : MeasureTheory.Measure α} (hf : PreErgodic f μ) (hsm : MeasurableSet s) (hs : f ⁻¹' s = s) :
        (∀ᵐ (x : α) μ, x s) ∀ᵐ (x : α) μ, xs
        theorem PreErgodic.prob_eq_zero_or_one {α : Type u_1} {m : MeasurableSpace α} {s : Set α} {f : αα} {μ : MeasureTheory.Measure α} [MeasureTheory.IsProbabilityMeasure μ] (hf : PreErgodic f μ) (hs : MeasurableSet s) (hs' : f ⁻¹' s = s) :
        μ s = 0 μ s = 1

        On a probability space, the (pre)ergodicity condition is a zero one law.

        theorem PreErgodic.of_iterate {α : Type u_1} {m : MeasurableSpace α} {f : αα} {μ : MeasureTheory.Measure α} (n : ) (hf : PreErgodic f^[n] μ) :
        theorem PreErgodic.smul_measure {α : Type u_1} {m : MeasurableSpace α} {f : αα} {μ : MeasureTheory.Measure α} {R : Type u_2} [SMul R ENNReal] [IsScalarTower R ENNReal ENNReal] (hf : PreErgodic f μ) (c : R) :
        PreErgodic f (c μ)
        theorem PreErgodic.zero_measure {α : Type u_1} {m : MeasurableSpace α} (f : αα) :
        theorem MeasureTheory.MeasurePreserving.preErgodic_of_preErgodic_conjugate {α : Type u_1} {m : MeasurableSpace α} {f : αα} {μ : Measure α} {β : Type u_2} {m' : MeasurableSpace β} {μ' : Measure β} {g : αβ} (hg : MeasurePreserving g μ μ') (hf : PreErgodic f μ) {f' : ββ} (h_comm : Function.Semiconj g f f') :
        PreErgodic f' μ'
        theorem MeasureTheory.MeasurePreserving.preErgodic_conjugate_iff {α : Type u_1} {m : MeasurableSpace α} {f : αα} {μ : Measure α} {β : Type u_2} {m' : MeasurableSpace β} {μ' : Measure β} {e : α ≃ᵐ β} (h : MeasurePreserving (⇑e) μ μ') :
        PreErgodic (e f e.symm) μ' PreErgodic f μ
        theorem MeasureTheory.MeasurePreserving.ergodic_conjugate_iff {α : Type u_1} {m : MeasurableSpace α} {f : αα} {μ : Measure α} {β : Type u_2} {m' : MeasurableSpace β} {μ' : Measure β} {e : α ≃ᵐ β} (h : MeasurePreserving (⇑e) μ μ') :
        Ergodic (e f e.symm) μ' Ergodic f μ
        theorem QuasiErgodic.aeconst_set₀ {α : Type u_1} {m : MeasurableSpace α} {s : Set α} {f : αα} {μ : MeasureTheory.Measure α} (hf : QuasiErgodic f μ) (hsm : MeasureTheory.NullMeasurableSet s μ) (hs : f ⁻¹' s =ᵐ[μ] s) :
        theorem QuasiErgodic.ae_empty_or_univ₀ {α : Type u_1} {m : MeasurableSpace α} {s : Set α} {f : αα} {μ : MeasureTheory.Measure α} (hf : QuasiErgodic f μ) (hsm : MeasureTheory.NullMeasurableSet s μ) (hs : f ⁻¹' s =ᵐ[μ] s) :

        For a quasi ergodic map, sets that are almost invariant (rather than strictly invariant) are still either almost empty or full.

        @[deprecated QuasiErgodic.ae_empty_or_univ₀ (since := "2024-07-21")]
        theorem QuasiErgodic.ae_empty_or_univ' {α : Type u_1} {m : MeasurableSpace α} {s : Set α} {f : αα} {μ : MeasureTheory.Measure α} (hf : QuasiErgodic f μ) (hsm : MeasureTheory.NullMeasurableSet s μ) (hs : f ⁻¹' s =ᵐ[μ] s) :

        Alias of QuasiErgodic.ae_empty_or_univ₀.


        For a quasi ergodic map, sets that are almost invariant (rather than strictly invariant) are still either almost empty or full.

        theorem QuasiErgodic.ae_mem_or_ae_nmem₀ {α : Type u_1} {m : MeasurableSpace α} {s : Set α} {f : αα} {μ : MeasureTheory.Measure α} (hf : QuasiErgodic f μ) (hsm : MeasureTheory.NullMeasurableSet s μ) (hs : f ⁻¹' s =ᵐ[μ] s) :
        (∀ᵐ (x : α) μ, x s) ∀ᵐ (x : α) μ, xs

        For a quasi ergodic map, sets that are almost invariant (rather than strictly invariant) are still either almost empty or full.

        theorem QuasiErgodic.smul_measure {α : Type u_1} {m : MeasurableSpace α} {f : αα} {μ : MeasureTheory.Measure α} {R : Type u_2} [SMul R ENNReal] [IsScalarTower R ENNReal ENNReal] (hf : QuasiErgodic f μ) (c : R) :
        QuasiErgodic f (c μ)
        theorem QuasiErgodic.zero_measure {α : Type u_1} {m : MeasurableSpace α} {f : αα} (hf : Measurable f) :
        theorem Ergodic.quasiErgodic {α : Type u_1} {m : MeasurableSpace α} {f : αα} {μ : MeasureTheory.Measure α} (hf : Ergodic f μ) :

        An ergodic map is quasi ergodic.

        theorem Ergodic.ae_empty_or_univ_of_preimage_ae_le' {α : Type u_1} {m : MeasurableSpace α} {s : Set α} {f : αα} {μ : MeasureTheory.Measure α} (hf : Ergodic f μ) (hs : MeasureTheory.NullMeasurableSet s μ) (hs' : f ⁻¹' s ≤ᵐ[μ] s) (h_fin : μ s ) :

        See also Ergodic.ae_empty_or_univ_of_preimage_ae_le.

        theorem Ergodic.ae_empty_or_univ_of_ae_le_preimage' {α : Type u_1} {m : MeasurableSpace α} {s : Set α} {f : αα} {μ : MeasureTheory.Measure α} (hf : Ergodic f μ) (hs : MeasureTheory.NullMeasurableSet s μ) (hs' : s ≤ᵐ[μ] f ⁻¹' s) (h_fin : μ s ) :

        See also Ergodic.ae_empty_or_univ_of_ae_le_preimage.

        theorem Ergodic.ae_empty_or_univ_of_image_ae_le' {α : Type u_1} {m : MeasurableSpace α} {s : Set α} {f : αα} {μ : MeasureTheory.Measure α} (hf : Ergodic f μ) (hs : MeasureTheory.NullMeasurableSet s μ) (hs' : f '' s ≤ᵐ[μ] s) (h_fin : μ s ) :

        See also Ergodic.ae_empty_or_univ_of_image_ae_le.

        theorem Ergodic.smul_measure {α : Type u_1} {m : MeasurableSpace α} {f : αα} {μ : MeasureTheory.Measure α} {R : Type u_2} [SMul R ENNReal] [IsScalarTower R ENNReal ENNReal] (hf : Ergodic f μ) (c : R) :
        Ergodic f (c μ)
        theorem Ergodic.zero_measure {α : Type u_1} {m : MeasurableSpace α} {f : αα} (hf : Measurable f) :
        theorem Ergodic.ae_empty_or_univ_of_image_ae_le {α : Type u_1} {m : MeasurableSpace α} {s : Set α} {f : αα} {μ : MeasureTheory.Measure α} [MeasureTheory.IsFiniteMeasure μ] (hf : Ergodic f μ) (hs : MeasureTheory.NullMeasurableSet s μ) (hs' : f '' s ≤ᵐ[μ] s) :