Documentation

Mathlib.Dynamics.TopologicalEntropy.DynamicalEntourage

Dynamical entourages #

Bowen-Dinaburg's definition of topological entropy of a transformation T in a metric space (X, d) relies on the so-called dynamical balls. These balls are sets B (x, ε, n) = { y | ∀ k < n, d(T^[k] x, T^[k] y) < ε }.

We implement Bowen-Dinaburg's definitions in the more general context of uniform spaces. Dynamical balls are replaced by what we call dynamical entourages. This file collects all general lemmas about these objects.

Main definitions #

Tags #

entropy

TODO #

Once #PR14718 has passed, add product of entourages.

In the context of (pseudo-e)metric spaces, relate the usual definition of dynamical balls with these dynamical entourages.

def Dynamics.dynEntourage {X : Type u_1} (T : XX) (U : Set (X × X)) (n : ) :
Set (X × X)

The dynamical entourage associated to a transformation T, entourage U and time n is the set of points (x, y) such that (T^[k] x, T^[k] y) ∈ U for all k < n, i.e. which are U-close up to time n.

Equations
Instances For
    theorem Dynamics.dynEntourage_eq_inter_Ico {X : Type u_1} (T : XX) (U : Set (X × X)) (n : ) :
    Dynamics.dynEntourage T U n = ⋂ (k : (Set.Ico 0 n)), (Prod.map T T)^[k] ⁻¹' U
    theorem Dynamics.mem_dynEntourage {X : Type u_1} {T : XX} {U : Set (X × X)} {n : } {x y : X} :
    (x, y) Dynamics.dynEntourage T U n k < n, (T^[k] x, T^[k] y) U
    theorem Dynamics.mem_ball_dynEntourage {X : Type u_1} {T : XX} {U : Set (X × X)} {n : } {x y : X} :
    theorem Dynamics.dynEntourage_mem_uniformity {X : Type u_1} [UniformSpace X] {T : XX} (h : UniformContinuous T) {U : Set (X × X)} (U_uni : U uniformity X) (n : ) :
    theorem Dynamics.idRel_subset_dynEntourage {X : Type u_1} (T : XX) {U : Set (X × X)} (h : idRel U) (n : ) :
    theorem SymmetricRel.dynEntourage {X : Type u_1} (T : XX) {U : Set (X × X)} (h : SymmetricRel U) (n : ) :
    theorem Dynamics.dynEntourage_comp_subset {X : Type u_1} (T : XX) (U V : Set (X × X)) (n : ) :
    theorem isOpen.dynEntourage {X : Type u_1} [TopologicalSpace X] {T : XX} (T_cont : Continuous T) {U : Set (X × X)} (U_open : IsOpen U) (n : ) :
    theorem Dynamics.dynEntourage_monotone {X : Type u_1} (T : XX) (n : ) :
    Monotone fun (U : Set (X × X)) => Dynamics.dynEntourage T U n
    theorem Dynamics.dynEntourage_antitone {X : Type u_1} (T : XX) (U : Set (X × X)) :
    @[simp]
    theorem Dynamics.dynEntourage_zero {X : Type u_1} {T : XX} {U : Set (X × X)} :
    Dynamics.dynEntourage T U 0 = Set.univ
    @[simp]
    theorem Dynamics.dynEntourage_one {X : Type u_1} {T : XX} {U : Set (X × X)} :
    @[simp]
    theorem Dynamics.dynEntourage_univ {X : Type u_1} {T : XX} {n : } :
    Dynamics.dynEntourage T Set.univ n = Set.univ
    theorem Dynamics.mem_ball_dynEntourage_comp {X : Type u_1} (T : XX) (n : ) {U : Set (X × X)} (U_symm : SymmetricRel U) (x y : X) (h : (UniformSpace.ball x (Dynamics.dynEntourage T U n) UniformSpace.ball y (Dynamics.dynEntourage T U n)).Nonempty) :
    theorem Function.Semiconj.preimage_dynEntourage {X : Type u_1} {Y : Type u_2} {S : XX} {T : YY} {φ : XY} (h : Function.Semiconj φ S T) (U : Set (Y × Y)) (n : ) :