Documentation

Mathlib.FieldTheory.Galois.GaloisClosure

Main definitions and results #

In a field extension K/k

TODO #

structure FiniteGaloisIntermediateField (k : Type u_1) (K : Type u_2) [Field k] [Field K] [Algebra k K] extends IntermediateField k K :
Type u_2

The type of intermediate fields of K/k that are finite and Galois over k

Instances For
    Equations
    instance FiniteGaloisIntermediateField.instIsGaloisSubtypeMemIntermediateFieldMax {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] (L₁ L₂ : IntermediateField k K) [IsGalois k L₁] [IsGalois k L₂] :
    IsGalois k (L₁ L₂)

    Turns the collection of finite Galois IntermediateFields of K/k into a lattice.

    instance FiniteGaloisIntermediateField.instIsGaloisSubtypeMemIntermediateFieldMin {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] (L₁ L₂ : IntermediateField k K) [IsGalois k L₁] [IsGalois k L₂] :
    IsGalois k (L₁ L₂)
    Equations
    Equations
    @[simp]
    theorem FiniteGaloisIntermediateField.le_iff {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] (L₁ L₂ : FiniteGaloisIntermediateField k K) :
    L₁ L₂ L₁.toIntermediateField L₂.toIntermediateField
    noncomputable def FiniteGaloisIntermediateField.adjoin (k : Type u_1) {K : Type u_2} [Field k] [Field K] [Algebra k K] [IsGalois k K] (s : Set K) [Finite s] :

    The minimal (finite) Galois intermediate field containing a finite set s : Set K in a Galois extension K/k defined as the the normal closure of the field obtained by adjoining the set s : Set K to k.

    Equations
    Instances For
      @[simp]
      theorem FiniteGaloisIntermediateField.adjoin_val {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] [IsGalois k K] (s : Set K) [Finite s] :
      (adjoin k s).toIntermediateField = normalClosure k (↥(IntermediateField.adjoin k s)) K
      theorem FiniteGaloisIntermediateField.subset_adjoin (k : Type u_1) {K : Type u_2} [Field k] [Field K] [Algebra k K] [IsGalois k K] (s : Set K) [Finite s] :
      s (adjoin k s).toIntermediateField
      theorem FiniteGaloisIntermediateField.adjoin_simple_le_iff {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] [IsGalois k K] {x : K} {L : FiniteGaloisIntermediateField k K} :
      adjoin k {x} L x L.toIntermediateField
      @[simp]
      theorem FiniteGaloisIntermediateField.adjoin_map {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] [IsGalois k K] (f : K →ₐ[k] K) (s : Set K) [Finite s] :
      adjoin k (f '' s) = adjoin k s
      @[simp]
      theorem FiniteGaloisIntermediateField.adjoin_simple_map_algHom {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] [IsGalois k K] (f : K →ₐ[k] K) (x : K) :
      adjoin k {f x} = adjoin k {x}
      @[simp]
      theorem FiniteGaloisIntermediateField.adjoin_simple_map_algEquiv {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] [IsGalois k K] (f : K ≃ₐ[k] K) (x : K) :
      adjoin k {f x} = adjoin k {x}