Documentation

Mathlib.FieldTheory.Galois.GaloisClosure

Main definitions and results #

In a field extension K/k

TODO #

structure FiniteGaloisIntermediateField (k : Type u_1) (K : Type u_2) [Field k] [Field K] [Algebra k K] extends IntermediateField :
Type u_2

The type of intermediate fields of K/k that are finite and Galois over k

  • carrier : Set K
  • mul_mem' : ∀ {a b : K}, a self.carrierb self.carriera * b self.carrier
  • one_mem' : 1 self.carrier
  • add_mem' : ∀ {a b : K}, a self.carrierb self.carriera + b self.carrier
  • zero_mem' : 0 self.carrier
  • algebraMap_mem' : ∀ (r : k), (algebraMap k K) r self.carrier
  • inv_mem' : xself.carrier, x⁻¹ self.carrier
  • finiteDimensional : FiniteDimensional k self.toIntermediateField
  • isGalois : IsGalois k self.toIntermediateField
Instances For
    theorem FiniteGaloisIntermediateField.finiteDimensional {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] (self : FiniteGaloisIntermediateField k K) :
    FiniteDimensional k self.toIntermediateField
    theorem FiniteGaloisIntermediateField.isGalois {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] (self : FiniteGaloisIntermediateField k K) :
    IsGalois k self.toIntermediateField
    Equations
    Equations
    Equations
    • =
    instance FiniteGaloisIntermediateField.instIsGaloisSubtypeMemIntermediateField (k : Type u_1) (K : Type u_2) [Field k] [Field K] [Algebra k K] (L : FiniteGaloisIntermediateField k K) :
    IsGalois k L.toIntermediateField
    Equations
    • =
    theorem FiniteGaloisIntermediateField.val_injective {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] :
    Function.Injective FiniteGaloisIntermediateField.toIntermediateField
    instance FiniteGaloisIntermediateField.instIsGaloisSubtypeMemIntermediateFieldSup {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] (L₁ : IntermediateField k K) (L₂ : IntermediateField k K) [IsGalois k L₁] [IsGalois k L₂] :
    IsGalois k (L₁ L₂)

    Turns the collection of finite Galois IntermediateFields of K/k into a lattice.

    Equations
    • =
    Equations
    • =
    Equations
    • =
    Equations
    • =
    Equations
    • =
    instance FiniteGaloisIntermediateField.instIsGaloisSubtypeMemIntermediateFieldInf {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] (L₁ : IntermediateField k K) (L₂ : IntermediateField k K) [IsGalois k L₁] [IsGalois k L₂] :
    IsGalois k (L₁ L₂)
    Equations
    • =
    Equations
    Equations
    Equations
    Equations
    • FiniteGaloisIntermediateField.instOrderBot = OrderBot.mk
    @[simp]
    theorem FiniteGaloisIntermediateField.le_iff {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] (L₁ : FiniteGaloisIntermediateField k K) (L₂ : FiniteGaloisIntermediateField k K) :
    L₁ L₂ L₁.toIntermediateField L₂.toIntermediateField
    noncomputable def FiniteGaloisIntermediateField.adjoin (k : Type u_1) {K : Type u_2} [Field k] [Field K] [Algebra k K] [IsGalois k K] (s : Set K) [Finite s] :

    The minimal (finite) Galois intermediate field containing a finite set s : Set K in a Galois extension K/k defined as the the normal closure of the field obtained by adjoining the set s : Set K to k.

    Equations
    Instances For
      @[simp]
      theorem FiniteGaloisIntermediateField.adjoin_val {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] [IsGalois k K] (s : Set K) [Finite s] :
      theorem FiniteGaloisIntermediateField.subset_adjoin (k : Type u_1) {K : Type u_2} [Field k] [Field K] [Algebra k K] [IsGalois k K] (s : Set K) [Finite s] :
      s (FiniteGaloisIntermediateField.adjoin k s).toIntermediateField
      theorem FiniteGaloisIntermediateField.adjoin_simple_le_iff {k : Type u_1} {K : Type u_2} [Field k] [Field K] [Algebra k K] [IsGalois k K] {x : K} {L : FiniteGaloisIntermediateField k K} :
      FiniteGaloisIntermediateField.adjoin k {x} L x L.toIntermediateField