Documentation

Mathlib.Geometry.Manifold.SmoothManifoldWithCorners

Smooth manifolds (possibly with boundary or corners) #

A smooth manifold is a manifold modelled on a normed vector space, or a subset like a half-space (to get manifolds with boundaries) for which the changes of coordinates are smooth maps. We define a model with corners as a map I : H → E embedding nicely the topological space H in the vector space E (or more precisely as a structure containing all the relevant properties). Given such a model with corners I on (E, H), we define the groupoid of local homeomorphisms of H which are smooth when read in E (for any regularity n : ℕ∞). With this groupoid at hand and the general machinery of charted spaces, we thus get the notion of C^n manifold with respect to any model with corners I on (E, H). We also introduce a specific type class for C^∞ manifolds as these are the most commonly used.

Some texts assume manifolds to be Hausdorff and second countable. We (in mathlib) assume neither, but add these assumptions later as needed. (Quite a few results still do not require them.)

Main definitions #

As specific examples of models with corners, we define (in Geometry.Manifold.Instances.Real)

With these definitions at hand, to invoke an n-dimensional real manifold without boundary, one could use

variable {n : ℕ} {M : Type*} [TopologicalSpace M] [ChartedSpace (EuclideanSpace ℝ (Fin n)) M] [SmoothManifoldWithCorners (𝓡 n) M].

However, this is not the recommended way: a theorem proved using this assumption would not apply for instance to the tangent space of such a manifold, which is modelled on (EuclideanSpace ℝ (Fin n)) × (EuclideanSpace ℝ (Fin n)) and not on EuclideanSpace ℝ (Fin (2 * n))! In the same way, it would not apply to product manifolds, modelled on (EuclideanSpace ℝ (Fin n)) × (EuclideanSpace ℝ (Fin m)). The right invocation does not focus on one specific construction, but on all constructions sharing the right properties, like

variable {E : Type*} [NormedAddCommGroup E] [NormedSpace ℝ E] [FiniteDimensional ℝ E] {I : ModelWithCorners ℝ E E} [I.Boundaryless] {M : Type*} [TopologicalSpace M] [ChartedSpace E M] [SmoothManifoldWithCorners I M]

Here, I.Boundaryless is a typeclass property ensuring that there is no boundary (this is for instance the case for modelWithCornersSelf, or products of these). Note that one could consider as a natural assumption to only use the trivial model with corners modelWithCornersSelf ℝ E, but again in product manifolds the natural model with corners will not be this one but the product one (and they are not defeq as (fun p : E × F ↦ (p.1, p.2)) is not defeq to the identity). So, it is important to use the above incantation to maximize the applicability of theorems.

We also define TangentSpace I (x : M) as a type synonym of E, and TangentBundle I M as a type synonym for Π (x : M), TangentSpace I x (in the form of an abbrev of Bundle.TotalSpace E (TangentSpace I : M → Type _)). Apart from basic typeclasses on TangentSpace I x, nothing is proved about them in this file, but it is useful to have them available as definitions early on to get a clean import structure below. The smooth bundle structure is defined in VectorBundle.Tangent, while the definition is used to talk about manifold derivatives in MFDeriv.Basic, and neither file needs import the other.

Implementation notes #

We want to talk about manifolds modelled on a vector space, but also on manifolds with boundary, modelled on a half space (or even manifolds with corners). For the latter examples, we still want to define smooth functions, tangent bundles, and so on. As smooth functions are well defined on vector spaces or subsets of these, one could take for model space a subtype of a vector space. With the drawback that the whole vector space itself (which is the most basic example) is not directly a subtype of itself: the inclusion of univ : Set E in Set E would show up in the definition, instead of id.

A good abstraction covering both cases it to have a vector space E (with basic example the Euclidean space), a model space H (with basic example the upper half space), and an embedding of H into E (which can be the identity for H = E, or Subtype.val for manifolds with corners). We say that the pair (E, H) with their embedding is a model with corners, and we encompass all the relevant properties (in particular the fact that the image of H in E should have unique differentials) in the definition of ModelWithCorners.

We concentrate on C^∞ manifolds: all the definitions work equally well for C^n manifolds, but later on it is a pain to carry all over the smoothness parameter, especially when one wants to deal with C^k functions as there would be additional conditions k ≤ n everywhere. Since one deals almost all the time with C^∞ (or analytic) manifolds, this seems to be a reasonable choice that one could revisit later if needed. C^k manifolds are still available, but they should be called using HasGroupoid M (contDiffGroupoid k I) where I is the model with corners.

I have considered using the model with corners I as a typeclass argument, possibly outParam, to get lighter notations later on, but it did not turn out right, as on E × F there are two natural model with corners, the trivial (identity) one, and the product one, and they are not defeq and one needs to indicate to Lean which one we want to use. This means that when talking on objects on manifolds one will most often need to specify the model with corners one is using. For instance, the tangent bundle will be TangentBundle I M and the derivative will be mfderiv I I' f, instead of the more natural notations TangentBundle 𝕜 M and mfderiv 𝕜 f (the field has to be explicit anyway, as some manifolds could be considered both as real and complex manifolds).

The extended natural number

Equations
Instances For

    Models with corners. #

    structure ModelWithCorners (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] (E : Type u_2) [NormedAddCommGroup E] [NormedSpace 𝕜 E] (H : Type u_3) [TopologicalSpace H] extends PartialEquiv H E :
    Type (max u_2 u_3)

    A structure containing information on the way a space H embeds in a model vector space E over the field 𝕜. This is all what is needed to define a smooth manifold with model space H, and model vector space E.

    We require two conditions uniqueDiffOn' and target_subset_closure_interior, which are satisfied in the relevant cases (where range I = univ or a half space or a quadrant) and useful for technical reasons. The former makes sure that manifold derivatives are uniquely defined, the latter ensures that for C^2 maps the second derivatives are symmetric even for points on the boundary, as these are limit points of interior points where symmetry holds. If further conditions turn out to be useful, they can be added here.

    Instances For
      theorem ModelWithCorners.ext {𝕜 : Type u_1} {inst✝ : NontriviallyNormedField 𝕜} {E : Type u_2} {inst✝¹ : NormedAddCommGroup E} {inst✝² : NormedSpace 𝕜 E} {H : Type u_3} {inst✝³ : TopologicalSpace H} {x y : ModelWithCorners 𝕜 E H} (toFun : x.toPartialEquiv = y.toPartialEquiv) (invFun : x.invFun = y.invFun) (source : x.source = y.source) (target : x.target = y.target) :
      x = y

      A vector space is a model with corners.

      Equations
      • modelWithCornersSelf 𝕜 E = { toPartialEquiv := PartialEquiv.refl E, source_eq := , uniqueDiffOn' := , target_subset_closure_interior := , continuous_toFun := , continuous_invFun := }
      Instances For

        A vector space is a model with corners.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          A normed field is a model with corners.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            def ModelWithCorners.toFun' {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (e : ModelWithCorners 𝕜 E H) :
            HE

            Coercion of a model with corners to a function. We don't use e.toFun because it is actually e.toPartialEquiv.toFun, so simp will apply lemmas about toPartialEquiv. While we may want to switch to this behavior later, doing it mid-port will break a lot of proofs.

            Equations
            • e = e.toPartialEquiv
            Instances For
              instance ModelWithCorners.instCoeFunForall {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] :
              CoeFun (ModelWithCorners 𝕜 E H) fun (x : ModelWithCorners 𝕜 E H) => HE
              Equations
              • ModelWithCorners.instCoeFunForall = { coe := ModelWithCorners.toFun' }
              def ModelWithCorners.symm {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) :

              The inverse to a model with corners, only registered as a PartialEquiv.

              Equations
              • I.symm = I.symm
              Instances For
                def ModelWithCorners.Simps.apply (𝕜 : Type u_4) [NontriviallyNormedField 𝕜] (E : Type u_5) [NormedAddCommGroup E] [NormedSpace 𝕜 E] (H : Type u_6) [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) :
                HE

                See Note [custom simps projection]. We need to specify this projection explicitly in this case, because it is a composition of multiple projections.

                Equations
                Instances For
                  def ModelWithCorners.Simps.symm_apply (𝕜 : Type u_4) [NontriviallyNormedField 𝕜] (E : Type u_5) [NormedAddCommGroup E] [NormedSpace 𝕜 E] (H : Type u_6) [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) :
                  EH

                  See Note [custom simps projection]

                  Equations
                  Instances For
                    @[simp]
                    theorem ModelWithCorners.toPartialEquiv_coe {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) :
                    I.toPartialEquiv = I
                    @[simp]
                    theorem ModelWithCorners.mk_coe {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (e : PartialEquiv H E) (a : e.source = Set.univ) (b : UniqueDiffOn 𝕜 e.target) (c : e.target closure (interior e.target)) (d : Continuous e) (d' : Continuous e.invFun) :
                    { toPartialEquiv := e, source_eq := a, uniqueDiffOn' := b, target_subset_closure_interior := c, continuous_toFun := d, continuous_invFun := d' } = e
                    @[simp]
                    theorem ModelWithCorners.toPartialEquiv_coe_symm {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) :
                    I.symm = I.symm
                    @[simp]
                    theorem ModelWithCorners.mk_symm {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (e : PartialEquiv H E) (a : e.source = Set.univ) (b : UniqueDiffOn 𝕜 e.target) (c : e.target closure (interior e.target)) (d : Continuous e) (d' : Continuous e.invFun) :
                    { toPartialEquiv := e, source_eq := a, uniqueDiffOn' := b, target_subset_closure_interior := c, continuous_toFun := d, continuous_invFun := d' }.symm = e.symm
                    theorem ModelWithCorners.continuous {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) :
                    theorem ModelWithCorners.continuousAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {x : H} :
                    ContinuousAt (↑I) x
                    theorem ModelWithCorners.continuousWithinAt {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {s : Set H} {x : H} :
                    theorem ModelWithCorners.continuous_symm {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) :
                    Continuous I.symm
                    theorem ModelWithCorners.continuousAt_symm {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {x : E} :
                    ContinuousAt (↑I.symm) x
                    theorem ModelWithCorners.continuousWithinAt_symm {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {s : Set E} {x : E} :
                    ContinuousWithinAt (↑I.symm) s x
                    theorem ModelWithCorners.continuousOn_symm {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {s : Set E} :
                    ContinuousOn (↑I.symm) s
                    @[simp]
                    theorem ModelWithCorners.target_eq {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) :
                    I.target = Set.range I
                    theorem ModelWithCorners.uniqueDiffOn {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) :
                    @[deprecated ModelWithCorners.uniqueDiffOn]
                    theorem ModelWithCorners.unique_diff {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) :

                    Alias of ModelWithCorners.uniqueDiffOn.

                    @[simp]
                    theorem ModelWithCorners.left_inv {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (x : H) :
                    I.symm (I x) = x
                    theorem ModelWithCorners.leftInverse {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) :
                    Function.LeftInverse I.symm I
                    @[simp]
                    theorem ModelWithCorners.symm_comp_self {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) :
                    I.symm I = id
                    theorem ModelWithCorners.rightInvOn {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) :
                    Set.RightInvOn (↑I.symm) (↑I) (Set.range I)
                    @[simp]
                    theorem ModelWithCorners.right_inv {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {x : E} (hx : x Set.range I) :
                    I (I.symm x) = x
                    theorem ModelWithCorners.preimage_image {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (s : Set H) :
                    I ⁻¹' (I '' s) = s
                    theorem ModelWithCorners.image_eq {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (s : Set H) :
                    I '' s = I.symm ⁻¹' s Set.range I
                    @[deprecated ModelWithCorners.isClosedEmbedding]

                    Alias of ModelWithCorners.isClosedEmbedding.

                    @[deprecated ModelWithCorners.isClosed_range]
                    theorem ModelWithCorners.closed_range {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) :

                    Alias of ModelWithCorners.isClosed_range.

                    theorem ModelWithCorners.map_nhds_eq {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (x : H) :
                    Filter.map (↑I) (nhds x) = nhdsWithin (I x) (Set.range I)
                    theorem ModelWithCorners.map_nhdsWithin_eq {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (s : Set H) (x : H) :
                    Filter.map (↑I) (nhdsWithin x s) = nhdsWithin (I x) (I '' s)
                    theorem ModelWithCorners.image_mem_nhdsWithin {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {x : H} {s : Set H} (hs : s nhds x) :
                    I '' s nhdsWithin (I x) (Set.range I)
                    theorem ModelWithCorners.symm_map_nhdsWithin_image {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {x : H} {s : Set H} :
                    Filter.map (↑I.symm) (nhdsWithin (I x) (I '' s)) = nhdsWithin x s
                    theorem ModelWithCorners.symm_map_nhdsWithin_range {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (x : H) :
                    Filter.map (↑I.symm) (nhdsWithin (I x) (Set.range I)) = nhds x
                    theorem ModelWithCorners.uniqueDiffOn_preimage {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {s : Set H} (hs : IsOpen s) :
                    UniqueDiffOn 𝕜 (I.symm ⁻¹' s Set.range I)
                    @[deprecated ModelWithCorners.uniqueDiffOn_preimage]
                    theorem ModelWithCorners.unique_diff_preimage {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {s : Set H} (hs : IsOpen s) :
                    UniqueDiffOn 𝕜 (I.symm ⁻¹' s Set.range I)

                    Alias of ModelWithCorners.uniqueDiffOn_preimage.

                    theorem ModelWithCorners.uniqueDiffOn_preimage_source {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {β : Type u_4} [TopologicalSpace β] {e : PartialHomeomorph H β} :
                    UniqueDiffOn 𝕜 (I.symm ⁻¹' e.source Set.range I)
                    @[deprecated ModelWithCorners.uniqueDiffOn_preimage_source]
                    theorem ModelWithCorners.unique_diff_preimage_source {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {β : Type u_4} [TopologicalSpace β] {e : PartialHomeomorph H β} :
                    UniqueDiffOn 𝕜 (I.symm ⁻¹' e.source Set.range I)

                    Alias of ModelWithCorners.uniqueDiffOn_preimage_source.

                    theorem ModelWithCorners.uniqueDiffWithinAt_image {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {x : H} :
                    UniqueDiffWithinAt 𝕜 (Set.range I) (I x)
                    @[deprecated ModelWithCorners.uniqueDiffWithinAt_image]
                    theorem ModelWithCorners.unique_diff_at_image {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {x : H} :
                    UniqueDiffWithinAt 𝕜 (Set.range I) (I x)

                    Alias of ModelWithCorners.uniqueDiffWithinAt_image.

                    theorem ModelWithCorners.symm_continuousWithinAt_comp_right_iff {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {X : Type u_4} [TopologicalSpace X] {f : HX} {s : Set H} {x : H} :
                    ContinuousWithinAt (f I.symm) (I.symm ⁻¹' s Set.range I) (I x) ContinuousWithinAt f s x
                    theorem ModelWithCorners.t1Space {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (M : Type u_4) [TopologicalSpace M] [ChartedSpace H M] :

                    Every smooth manifold is a Fréchet space (T1 space) -- regardless of whether it is Hausdorff.

                    @[simp]

                    In the trivial model with corners, the associated PartialEquiv is the identity.

                    @[simp]
                    theorem modelWithCornersSelf_coe (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] (E : Type u_2) [NormedAddCommGroup E] [NormedSpace 𝕜 E] :
                    (modelWithCornersSelf 𝕜 E) = id
                    @[simp]
                    theorem modelWithCornersSelf_coe_symm (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] (E : Type u_2) [NormedAddCommGroup E] [NormedSpace 𝕜 E] :
                    (modelWithCornersSelf 𝕜 E).symm = id
                    def ModelWithCorners.prod {𝕜 : Type u} [NontriviallyNormedField 𝕜] {E : Type v} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type w} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {E' : Type v'} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type w'} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') :
                    ModelWithCorners 𝕜 (E × E') (ModelProd H H')

                    Given two model_with_corners I on (E, H) and I' on (E', H'), we define the model with corners I.prod I' on (E × E', ModelProd H H'). This appears in particular for the manifold structure on the tangent bundle to a manifold modelled on (E, H): it will be modelled on (E × E, H × E). See note [Manifold type tags] for explanation about ModelProd H H' vs H × H'.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      theorem ModelWithCorners.prod_symm_apply {𝕜 : Type u} [NontriviallyNormedField 𝕜] {E : Type v} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type w} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {E' : Type v'} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type w'} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') (x : E × E') :
                      (I.prod I').symm x = (I.symm x.1, I'.symm x.2)
                      theorem ModelWithCorners.prod_apply {𝕜 : Type u} [NontriviallyNormedField 𝕜] {E : Type v} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type w} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {E' : Type v'} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type w'} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') (x : ModelProd H H') :
                      (I.prod I') x = (I x.1, I' x.2)
                      theorem ModelWithCorners.prod_target {𝕜 : Type u} [NontriviallyNormedField 𝕜] {E : Type v} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type w} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {E' : Type v'} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type w'} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') :
                      (I.prod I').target = (I.prod I'.toPartialEquiv).target
                      theorem ModelWithCorners.prod_source {𝕜 : Type u} [NontriviallyNormedField 𝕜] {E : Type v} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type w} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {E' : Type v'} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type w'} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') :
                      (I.prod I').source = {x : ModelProd H H' | x.1 I.source x.2 I'.source}
                      def ModelWithCorners.pi {𝕜 : Type u} [NontriviallyNormedField 𝕜] {ι : Type v} [Fintype ι] {E : ιType w} [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace 𝕜 (E i)] {H : ιType u'} [(i : ι) → TopologicalSpace (H i)] (I : (i : ι) → ModelWithCorners 𝕜 (E i) (H i)) :
                      ModelWithCorners 𝕜 ((i : ι) → E i) (ModelPi H)

                      Given a finite family of ModelWithCorners I i on (E i, H i), we define the model with corners pi I on (Π i, E i, ModelPi H). See note [Manifold type tags] for explanation about ModelPi H.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        @[reducible, inline]
                        abbrev ModelWithCorners.tangent {𝕜 : Type u} [NontriviallyNormedField 𝕜] {E : Type v} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type w} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) :
                        ModelWithCorners 𝕜 (E × E) (ModelProd H E)

                        Special case of product model with corners, which is trivial on the second factor. This shows up as the model to tangent bundles.

                        Equations
                        Instances For
                          @[simp]
                          theorem modelWithCorners_prod_toPartialEquiv {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_4} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {H : Type u_5} [TopologicalSpace H] {G : Type u_7} [TopologicalSpace G] {I : ModelWithCorners 𝕜 E H} {J : ModelWithCorners 𝕜 F G} :
                          (I.prod J).toPartialEquiv = I.prod J.toPartialEquiv
                          @[simp]
                          theorem modelWithCorners_prod_coe {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_5} [TopologicalSpace H] {H' : Type u_6} [TopologicalSpace H'] (I : ModelWithCorners 𝕜 E H) (I' : ModelWithCorners 𝕜 E' H') :
                          (I.prod I') = Prod.map I I'
                          @[simp]
                          theorem modelWithCorners_prod_coe_symm {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_3} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_5} [TopologicalSpace H] {H' : Type u_6} [TopologicalSpace H'] (I : ModelWithCorners 𝕜 E H) (I' : ModelWithCorners 𝕜 E' H') :
                          (I.prod I').symm = Prod.map I.symm I'.symm
                          theorem modelWithCornersSelf_prod {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_4} [NormedAddCommGroup F] [NormedSpace 𝕜 F] :

                          This lemma should be erased, or at least burn in hell, as it uses bad defeq: the left model with corners is for E times F, the right one for ModelProd E F, and there's a good reason we are distinguishing them.

                          theorem ModelWithCorners.range_prod {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_4} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {H : Type u_5} [TopologicalSpace H] {G : Type u_7} [TopologicalSpace G] {I : ModelWithCorners 𝕜 E H} {J : ModelWithCorners 𝕜 F G} :
                          Set.range (I.prod J) = Set.range I ×ˢ Set.range J
                          class ModelWithCorners.Boundaryless {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) :

                          Property ensuring that the model with corners I defines manifolds without boundary. This differs from the more general BoundarylessManifold, which requires every point on the manifold to be an interior point.

                          Instances
                            theorem ModelWithCorners.range_eq_univ {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) [I.Boundaryless] :
                            Set.range I = Set.univ
                            def ModelWithCorners.toHomeomorph {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) [I.Boundaryless] :
                            H ≃ₜ E

                            If I is a ModelWithCorners.Boundaryless model, then it is a homeomorphism.

                            Equations
                            • I.toHomeomorph = { toFun := I.toPartialEquiv, invFun := I.invFun, left_inv := , right_inv := , continuous_toFun := , continuous_invFun := }
                            Instances For
                              @[simp]
                              theorem ModelWithCorners.toHomeomorph_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) [I.Boundaryless] (a✝ : H) :
                              I.toHomeomorph a✝ = I a✝
                              @[simp]
                              theorem ModelWithCorners.toHomeomorph_symm_apply {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) [I.Boundaryless] (a✝ : E) :
                              I.toHomeomorph.symm a✝ = I.symm a✝
                              instance modelWithCornersSelf_boundaryless (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] (E : Type u_2) [NormedAddCommGroup E] [NormedSpace 𝕜 E] :
                              (modelWithCornersSelf 𝕜 E).Boundaryless

                              The trivial model with corners has no boundary

                              Equations
                              • =
                              instance ModelWithCorners.range_eq_univ_prod {𝕜 : Type u} [NontriviallyNormedField 𝕜] {E : Type v} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type w} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) [I.Boundaryless] {E' : Type v'} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type w'} [TopologicalSpace H'] (I' : ModelWithCorners 𝕜 E' H') [I'.Boundaryless] :
                              (I.prod I').Boundaryless

                              If two model with corners are boundaryless, their product also is

                              Equations
                              • =

                              Smooth functions on models with corners #

                              def contDiffPregroupoid (n : ℕ∞) {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) :

                              Given a model with corners (E, H), we define the pregroupoid of C^n transformations of H as the maps that are C^n when read in E through I.

                              Equations
                              Instances For
                                def contDiffGroupoid (n : ℕ∞) {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) :

                                Given a model with corners (E, H), we define the groupoid of invertible C^n transformations of H as the invertible maps that are C^n when read in E through I.

                                Equations
                                Instances For
                                  theorem contDiffGroupoid_le {m n : ℕ∞} {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} (h : m n) :

                                  Inclusion of the groupoid of C^n local diffeos in the groupoid of C^m local diffeos when m ≤ n

                                  The groupoid of 0-times continuously differentiable maps is just the groupoid of all partial homeomorphisms

                                  theorem ofSet_mem_contDiffGroupoid {n : ℕ∞} {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {s : Set H} (hs : IsOpen s) :

                                  An identity partial homeomorphism belongs to the C^n groupoid.

                                  theorem symm_trans_mem_contDiffGroupoid {n : ℕ∞} {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] (e : PartialHomeomorph M H) :
                                  e.symm.trans e contDiffGroupoid n I

                                  The composition of a partial homeomorphism from H to M and its inverse belongs to the C^n groupoid.

                                  theorem contDiffGroupoid_prod {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {E' : Type u_5} {H' : Type u_6} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] [TopologicalSpace H'] {I : ModelWithCorners 𝕜 E H} {I' : ModelWithCorners 𝕜 E' H'} {e : PartialHomeomorph H H} {e' : PartialHomeomorph H' H'} (he : e contDiffGroupoid I) (he' : e' contDiffGroupoid I') :
                                  e.prod e' contDiffGroupoid (I.prod I')

                                  The product of two smooth partial homeomorphisms is smooth.

                                  The C^n groupoid is closed under restriction.

                                  Equations
                                  • =

                                  Smooth manifolds with corners #

                                  class SmoothManifoldWithCorners {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (M : Type u_4) [TopologicalSpace M] [ChartedSpace H M] extends HasGroupoid M (contDiffGroupoid I) :

                                  Typeclass defining smooth manifolds with corners with respect to a model with corners, over a field 𝕜 and with infinite smoothness to simplify typeclass search and statements later on.

                                  Instances
                                    theorem smoothManifoldWithCorners_of_contDiffOn {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (M : Type u_4) [TopologicalSpace M] [ChartedSpace H M] (h : ∀ (e e' : PartialHomeomorph M H), e atlas H Me' atlas H MContDiffOn 𝕜 (I (e.symm.trans e') I.symm) (I.symm ⁻¹' (e.symm.trans e').source Set.range I)) :
                                    instance model_space_smooth {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} :

                                    For any model with corners, the model space is a smooth manifold

                                    Equations
                                    • =

                                    The maximal atlas of M for the smooth manifold with corners structure corresponding to the model with corners I.

                                    Equations
                                    Instances For

                                      The empty set is a smooth manifold w.r.t. any charted space and model.

                                      Equations
                                      • =
                                      instance SmoothManifoldWithCorners.prod {𝕜 : Type u_5} [NontriviallyNormedField 𝕜] {E : Type u_6} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {E' : Type u_7} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H : Type u_8} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {H' : Type u_9} [TopologicalSpace H'] {I' : ModelWithCorners 𝕜 E' H'} (M : Type u_10) [TopologicalSpace M] [ChartedSpace H M] [SmoothManifoldWithCorners I M] (M' : Type u_11) [TopologicalSpace M'] [ChartedSpace H' M'] [SmoothManifoldWithCorners I' M'] :
                                      SmoothManifoldWithCorners (I.prod I') (M × M')

                                      The product of two smooth manifolds with corners is naturally a smooth manifold with corners.

                                      Equations
                                      • =
                                      theorem PartialHomeomorph.singleton_smoothManifoldWithCorners {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {M : Type u_4} [TopologicalSpace M] (e : PartialHomeomorph M H) (h : e.source = Set.univ) :
                                      @[deprecated Topology.IsOpenEmbedding.singleton_smoothManifoldWithCorners]

                                      Alias of Topology.IsOpenEmbedding.singleton_smoothManifoldWithCorners.

                                      Extended charts #

                                      In a smooth manifold with corners, the model space is the space H. However, we will also need to use extended charts taking values in the model vector space E. These extended charts are not PartialHomeomorph as the target is not open in E in general, but we can still register them as PartialEquiv.

                                      def PartialHomeomorph.extend {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) (I : ModelWithCorners 𝕜 E H) :

                                      Given a chart f on a manifold with corners, f.extend I is the extended chart to the model vector space.

                                      Equations
                                      • f.extend I = f.trans I.toPartialEquiv
                                      Instances For
                                        theorem PartialHomeomorph.extend_coe {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} :
                                        (f.extend I) = I f
                                        theorem PartialHomeomorph.extend_coe_symm {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} :
                                        (f.extend I).symm = f.symm I.symm
                                        theorem PartialHomeomorph.extend_source {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} :
                                        (f.extend I).source = f.source
                                        theorem PartialHomeomorph.isOpen_extend_source {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} :
                                        IsOpen (f.extend I).source
                                        theorem PartialHomeomorph.extend_target {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} :
                                        (f.extend I).target = I.symm ⁻¹' f.target Set.range I
                                        theorem PartialHomeomorph.extend_target' {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} :
                                        (f.extend I).target = I '' f.target
                                        theorem PartialHomeomorph.isOpen_extend_target {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} [I.Boundaryless] :
                                        IsOpen (f.extend I).target
                                        theorem PartialHomeomorph.mapsTo_extend {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} {s : Set M} (hs : s f.source) :
                                        Set.MapsTo (↑(f.extend I)) s ((f.extend I).symm ⁻¹' s Set.range I)
                                        theorem PartialHomeomorph.extend_left_inv {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} {x : M} (hxf : x f.source) :
                                        (f.extend I).symm ((f.extend I) x) = x
                                        theorem PartialHomeomorph.extend_left_inv' {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} {t : Set M} (ht : t f.source) :
                                        (f.extend I).symm (f.extend I) '' t = t

                                        Variant of f.extend_left_inv I, stated in terms of images.

                                        theorem PartialHomeomorph.extend_source_mem_nhds {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} {x : M} (h : x f.source) :
                                        (f.extend I).source nhds x
                                        theorem PartialHomeomorph.extend_source_mem_nhdsWithin {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} {s : Set M} {x : M} (h : x f.source) :
                                        (f.extend I).source nhdsWithin x s
                                        theorem PartialHomeomorph.continuousOn_extend {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} :
                                        ContinuousOn (↑(f.extend I)) (f.extend I).source
                                        theorem PartialHomeomorph.continuousAt_extend {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} {x : M} (h : x f.source) :
                                        ContinuousAt (↑(f.extend I)) x
                                        theorem PartialHomeomorph.map_extend_nhds {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} {x : M} (hy : x f.source) :
                                        Filter.map (↑(f.extend I)) (nhds x) = nhdsWithin ((f.extend I) x) (Set.range I)
                                        theorem PartialHomeomorph.map_extend_nhds_of_boundaryless {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} [I.Boundaryless] {x : M} (hx : x f.source) :
                                        Filter.map (↑(f.extend I)) (nhds x) = nhds ((f.extend I) x)
                                        theorem PartialHomeomorph.extend_target_mem_nhdsWithin {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} {y : M} (hy : y f.source) :
                                        (f.extend I).target nhdsWithin ((f.extend I) y) (Set.range I)
                                        theorem PartialHomeomorph.extend_image_nhd_mem_nhds_of_boundaryless {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} [I.Boundaryless] {x : M} (hx : x f.source) {s : Set M} (h : s nhds x) :
                                        (f.extend I) '' s nhds ((f.extend I) x)
                                        theorem PartialHomeomorph.extend_target_subset_range {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} :
                                        (f.extend I).target Set.range I
                                        theorem PartialHomeomorph.mem_interior_extend_target {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} {y : H} (hy : y f.target) (hy' : I y interior (Set.range I)) :
                                        I y interior (f.extend I).target

                                        If y ∈ f.target and I y ∈ interior (range I), then I y is an interior point of (I ∘ f).target.

                                        theorem PartialHomeomorph.nhdsWithin_extend_target_eq {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} {y : M} (hy : y f.source) :
                                        nhdsWithin ((f.extend I) y) (f.extend I).target = nhdsWithin ((f.extend I) y) (Set.range I)
                                        theorem PartialHomeomorph.extend_target_eventuallyEq {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} {y : M} (hy : y f.source) :
                                        (f.extend I).target =ᶠ[nhds ((f.extend I) y)] Set.range I
                                        theorem PartialHomeomorph.continuousAt_extend_symm' {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} {x : E} (h : x (f.extend I).target) :
                                        ContinuousAt (↑(f.extend I).symm) x
                                        theorem PartialHomeomorph.continuousAt_extend_symm {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} {x : M} (h : x f.source) :
                                        ContinuousAt (↑(f.extend I).symm) ((f.extend I) x)
                                        theorem PartialHomeomorph.continuousOn_extend_symm {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} :
                                        ContinuousOn (↑(f.extend I).symm) (f.extend I).target
                                        theorem PartialHomeomorph.extend_symm_continuousWithinAt_comp_right_iff {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} {X : Type u_8} [TopologicalSpace X] {g : MX} {s : Set M} {x : M} :
                                        ContinuousWithinAt (g (f.extend I).symm) ((f.extend I).symm ⁻¹' s Set.range I) ((f.extend I) x) ContinuousWithinAt (g f.symm) (f.symm ⁻¹' s) (f x)
                                        theorem PartialHomeomorph.isOpen_extend_preimage' {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} {s : Set E} (hs : IsOpen s) :
                                        IsOpen ((f.extend I).source (f.extend I) ⁻¹' s)
                                        theorem PartialHomeomorph.isOpen_extend_preimage {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} {s : Set E} (hs : IsOpen s) :
                                        IsOpen (f.source (f.extend I) ⁻¹' s)
                                        theorem PartialHomeomorph.map_extend_nhdsWithin_eq_image {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} {s : Set M} {y : M} (hy : y f.source) :
                                        Filter.map (↑(f.extend I)) (nhdsWithin y s) = nhdsWithin ((f.extend I) y) ((f.extend I) '' ((f.extend I).source s))
                                        theorem PartialHomeomorph.map_extend_nhdsWithin_eq_image_of_subset {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} {s : Set M} {y : M} (hy : y f.source) (hs : s f.source) :
                                        Filter.map (↑(f.extend I)) (nhdsWithin y s) = nhdsWithin ((f.extend I) y) ((f.extend I) '' s)
                                        theorem PartialHomeomorph.map_extend_nhdsWithin {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} {s : Set M} {y : M} (hy : y f.source) :
                                        Filter.map (↑(f.extend I)) (nhdsWithin y s) = nhdsWithin ((f.extend I) y) ((f.extend I).symm ⁻¹' s Set.range I)
                                        theorem PartialHomeomorph.map_extend_symm_nhdsWithin {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} {s : Set M} {y : M} (hy : y f.source) :
                                        Filter.map (↑(f.extend I).symm) (nhdsWithin ((f.extend I) y) ((f.extend I).symm ⁻¹' s Set.range I)) = nhdsWithin y s
                                        theorem PartialHomeomorph.map_extend_symm_nhdsWithin_range {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} {y : M} (hy : y f.source) :
                                        Filter.map (↑(f.extend I).symm) (nhdsWithin ((f.extend I) y) (Set.range I)) = nhds y
                                        theorem PartialHomeomorph.tendsto_extend_comp_iff {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} {α : Type u_8} {l : Filter α} {g : αM} (hg : ∀ᶠ (z : α) in l, g z f.source) {y : M} (hy : y f.source) :
                                        Filter.Tendsto ((f.extend I) g) l (nhds ((f.extend I) y)) Filter.Tendsto g l (nhds y)
                                        theorem PartialHomeomorph.continuousWithinAt_writtenInExtend_iff {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} {E' : Type u_5} {M' : Type u_6} {H' : Type u_7} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] [TopologicalSpace H'] [TopologicalSpace M'] {I' : ModelWithCorners 𝕜 E' H'} {s : Set M} {f' : PartialHomeomorph M' H'} {g : MM'} {y : M} (hy : y f.source) (hgy : g y f'.source) (hmaps : Set.MapsTo g s f'.source) :
                                        ContinuousWithinAt ((f'.extend I') g (f.extend I).symm) ((f.extend I).symm ⁻¹' s Set.range I) ((f.extend I) y) ContinuousWithinAt g s y
                                        theorem PartialHomeomorph.continuousOn_writtenInExtend_iff {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} {E' : Type u_5} {M' : Type u_6} {H' : Type u_7} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] [TopologicalSpace H'] [TopologicalSpace M'] {I' : ModelWithCorners 𝕜 E' H'} {s : Set M} {f' : PartialHomeomorph M' H'} {g : MM'} (hs : s f.source) (hmaps : Set.MapsTo g s f'.source) :
                                        ContinuousOn ((f'.extend I') g (f.extend I).symm) ((f.extend I) '' s) ContinuousOn g s

                                        If s ⊆ f.source and g x ∈ f'.source whenever x ∈ s, then g is continuous on s if and only if g written in charts f.extend I and f'.extend I' is continuous on f.extend I '' s.

                                        theorem PartialHomeomorph.extend_preimage_mem_nhdsWithin {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} {s t : Set M} {x : M} (h : x f.source) (ht : t nhdsWithin x s) :
                                        (f.extend I).symm ⁻¹' t nhdsWithin ((f.extend I) x) ((f.extend I).symm ⁻¹' s Set.range I)

                                        Technical lemma ensuring that the preimage under an extended chart of a neighborhood of a point in the source is a neighborhood of the preimage, within a set.

                                        theorem PartialHomeomorph.extend_preimage_mem_nhds {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} {t : Set M} {x : M} (h : x f.source) (ht : t nhds x) :
                                        (f.extend I).symm ⁻¹' t nhds ((f.extend I) x)
                                        theorem PartialHomeomorph.extend_preimage_inter_eq {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} {s t : Set M} :
                                        (f.extend I).symm ⁻¹' (s t) Set.range I = (f.extend I).symm ⁻¹' s Set.range I (f.extend I).symm ⁻¹' t

                                        Technical lemma to rewrite suitably the preimage of an intersection under an extended chart, to bring it into a convenient form to apply derivative lemmas.

                                        theorem PartialHomeomorph.extend_symm_preimage_inter_range_eventuallyEq_aux {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} {s : Set M} {x : M} (hx : x f.source) :
                                        (f.extend I).symm ⁻¹' s Set.range I =ᶠ[nhds ((f.extend I) x)] (f.extend I).target (f.extend I).symm ⁻¹' s
                                        theorem PartialHomeomorph.extend_symm_preimage_inter_range_eventuallyEq {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} {s : Set M} {x : M} (hs : s f.source) (hx : x f.source) :
                                        (f.extend I).symm ⁻¹' s Set.range I =ᶠ[nhds ((f.extend I) x)] (f.extend I) '' s

                                        We use the name extend_coord_change for (f'.extend I).symm ≫ f.extend I.

                                        theorem PartialHomeomorph.extend_coord_change_source {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f f' : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} :
                                        ((f.extend I).symm.trans (f'.extend I)).source = I '' (f.symm.trans f').source
                                        theorem PartialHomeomorph.extend_image_source_inter {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f f' : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} :
                                        (f.extend I) '' (f.source f'.source) = ((f.extend I).symm.trans (f'.extend I)).source
                                        theorem PartialHomeomorph.extend_coord_change_source_mem_nhdsWithin {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f f' : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} {x : E} (hx : x ((f.extend I).symm.trans (f'.extend I)).source) :
                                        ((f.extend I).symm.trans (f'.extend I)).source nhdsWithin x (Set.range I)
                                        theorem PartialHomeomorph.extend_coord_change_source_mem_nhdsWithin' {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (f f' : PartialHomeomorph M H) {I : ModelWithCorners 𝕜 E H} {x : M} (hxf : x f.source) (hxf' : x f'.source) :
                                        ((f.extend I).symm.trans (f'.extend I)).source nhdsWithin ((f.extend I) x) (Set.range I)
                                        theorem PartialHomeomorph.contDiffOn_extend_coord_change {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {f f' : PartialHomeomorph M H} {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] (hf : f SmoothManifoldWithCorners.maximalAtlas I M) (hf' : f' SmoothManifoldWithCorners.maximalAtlas I M) :
                                        ContDiffOn 𝕜 ((f.extend I) (f'.extend I).symm) ((f'.extend I).symm.trans (f.extend I)).source
                                        theorem PartialHomeomorph.contDiffWithinAt_extend_coord_change {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {f f' : PartialHomeomorph M H} {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] (hf : f SmoothManifoldWithCorners.maximalAtlas I M) (hf' : f' SmoothManifoldWithCorners.maximalAtlas I M) {x : E} (hx : x ((f'.extend I).symm.trans (f.extend I)).source) :
                                        ContDiffWithinAt 𝕜 ((f.extend I) (f'.extend I).symm) (Set.range I) x
                                        theorem PartialHomeomorph.contDiffWithinAt_extend_coord_change' {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {f f' : PartialHomeomorph M H} {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] (hf : f SmoothManifoldWithCorners.maximalAtlas I M) (hf' : f' SmoothManifoldWithCorners.maximalAtlas I M) {x : M} (hxf : x f.source) (hxf' : x f'.source) :
                                        ContDiffWithinAt 𝕜 ((f.extend I) (f'.extend I).symm) (Set.range I) ((f'.extend I) x)
                                        def extChartAt {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (I : ModelWithCorners 𝕜 E H) [ChartedSpace H M] (x : M) :

                                        The preferred extended chart on a manifold with corners around a point x, from a neighborhood of x to the model vector space.

                                        Equations
                                        Instances For
                                          theorem extChartAt_coe {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] (x : M) :
                                          (extChartAt I x) = I (chartAt H x)
                                          theorem extChartAt_coe_symm {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] (x : M) :
                                          (extChartAt I x).symm = (chartAt H x).symm I.symm
                                          theorem extChartAt_source {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (I : ModelWithCorners 𝕜 E H) [ChartedSpace H M] (x : M) :
                                          (extChartAt I x).source = (chartAt H x).source
                                          theorem isOpen_extChartAt_source {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] (x : M) :
                                          IsOpen (extChartAt I x).source
                                          theorem mem_extChartAt_source {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] (x : M) :
                                          x (extChartAt I x).source
                                          theorem mem_extChartAt_target {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] (x : M) :
                                          (extChartAt I x) x (extChartAt I x).target
                                          theorem extChartAt_target {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (I : ModelWithCorners 𝕜 E H) [ChartedSpace H M] (x : M) :
                                          (extChartAt I x).target = I.symm ⁻¹' (chartAt H x).target Set.range I
                                          theorem uniqueDiffOn_extChartAt_target {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] (x : M) :
                                          UniqueDiffOn 𝕜 (extChartAt I x).target
                                          theorem uniqueDiffWithinAt_extChartAt_target {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] (x : M) :
                                          UniqueDiffWithinAt 𝕜 (extChartAt I x).target ((extChartAt I x) x)
                                          theorem extChartAt_to_inv {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] (x : M) :
                                          (extChartAt I x).symm ((extChartAt I x) x) = x
                                          theorem mapsTo_extChartAt {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} {s : Set M} [ChartedSpace H M] {x : M} (hs : s (chartAt H x).source) :
                                          Set.MapsTo (↑(extChartAt I x)) s ((extChartAt I x).symm ⁻¹' s Set.range I)
                                          theorem extChartAt_source_mem_nhds' {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] {x x' : M} (h : x' (extChartAt I x).source) :
                                          (extChartAt I x).source nhds x'
                                          theorem extChartAt_source_mem_nhds {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] (x : M) :
                                          (extChartAt I x).source nhds x
                                          theorem extChartAt_source_mem_nhdsWithin' {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} {s : Set M} [ChartedSpace H M] {x x' : M} (h : x' (extChartAt I x).source) :
                                          (extChartAt I x).source nhdsWithin x' s
                                          theorem extChartAt_source_mem_nhdsWithin {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} {s : Set M} [ChartedSpace H M] (x : M) :
                                          (extChartAt I x).source nhdsWithin x s
                                          theorem continuousOn_extChartAt {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] (x : M) :
                                          ContinuousOn (↑(extChartAt I x)) (extChartAt I x).source
                                          theorem continuousAt_extChartAt' {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] {x x' : M} (h : x' (extChartAt I x).source) :
                                          ContinuousAt (↑(extChartAt I x)) x'
                                          theorem continuousAt_extChartAt {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] (x : M) :
                                          theorem map_extChartAt_nhds' {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] {x y : M} (hy : y (extChartAt I x).source) :
                                          Filter.map (↑(extChartAt I x)) (nhds y) = nhdsWithin ((extChartAt I x) y) (Set.range I)
                                          theorem map_extChartAt_nhds {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] (x : M) :
                                          Filter.map (↑(extChartAt I x)) (nhds x) = nhdsWithin ((extChartAt I x) x) (Set.range I)
                                          theorem map_extChartAt_nhds_of_boundaryless {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] [I.Boundaryless] (x : M) :
                                          Filter.map (↑(extChartAt I x)) (nhds x) = nhds ((extChartAt I x) x)
                                          theorem extChartAt_image_nhd_mem_nhds_of_boundaryless {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} {s : Set M} [ChartedSpace H M] [I.Boundaryless] {x : M} (hx : s nhds x) :
                                          (extChartAt I x) '' s nhds ((extChartAt I x) x)
                                          theorem extChartAt_target_mem_nhdsWithin' {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] {x y : M} (hy : y (extChartAt I x).source) :
                                          (extChartAt I x).target nhdsWithin ((extChartAt I x) y) (Set.range I)
                                          theorem extChartAt_target_mem_nhdsWithin {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] (x : M) :
                                          (extChartAt I x).target nhdsWithin ((extChartAt I x) x) (Set.range I)
                                          theorem extChartAt_target_mem_nhdsWithin_of_mem {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] {x : M} {y : E} (hy : y (extChartAt I x).target) :
                                          (extChartAt I x).target nhdsWithin y (Set.range I)
                                          theorem extChartAt_target_union_comp_range_mem_nhds_of_mem {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] {y : E} {x : M} (hy : y (extChartAt I x).target) :
                                          (extChartAt I x).target (Set.range I) nhds y
                                          theorem isOpen_extChartAt_target {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] [I.Boundaryless] (x : M) :
                                          IsOpen (extChartAt I x).target

                                          If we're boundaryless, extChartAt has open target

                                          theorem extChartAt_target_mem_nhds {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] [I.Boundaryless] (x : M) :
                                          (extChartAt I x).target nhds ((extChartAt I x) x)

                                          If we're boundaryless, (extChartAt I x).target is a neighborhood of the key point

                                          theorem extChartAt_target_mem_nhds' {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] [I.Boundaryless] {x : M} {y : E} (m : y (extChartAt I x).target) :
                                          (extChartAt I x).target nhds y

                                          If we're boundaryless, (extChartAt I x).target is a neighborhood of any of its points

                                          theorem extChartAt_target_subset_range {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] (x : M) :
                                          (extChartAt I x).target Set.range I
                                          theorem nhdsWithin_extChartAt_target_eq' {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] {x y : M} (hy : y (extChartAt I x).source) :
                                          nhdsWithin ((extChartAt I x) y) (extChartAt I x).target = nhdsWithin ((extChartAt I x) y) (Set.range I)

                                          Around the image of a point in the source, the neighborhoods are the same within (extChartAt I x).target and within range I.

                                          theorem nhdsWithin_extChartAt_target_eq_of_mem {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] {x : M} {z : E} (hz : z (extChartAt I x).target) :
                                          nhdsWithin z (extChartAt I x).target = nhdsWithin z (Set.range I)

                                          Around a point in the target, the neighborhoods are the same within (extChartAt I x).target and within range I.

                                          theorem nhdsWithin_extChartAt_target_eq {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] (x : M) :
                                          nhdsWithin ((extChartAt I x) x) (extChartAt I x).target = nhdsWithin ((extChartAt I x) x) (Set.range I)

                                          Around the image of the base point, the neighborhoods are the same within (extChartAt I x).target and within range I.

                                          theorem extChartAt_target_eventuallyEq' {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] {x y : M} (hy : y (extChartAt I x).source) :
                                          (extChartAt I x).target =ᶠ[nhds ((extChartAt I x) y)] Set.range I

                                          Around the image of a point in the source, (extChartAt I x).target and range I coincide locally.

                                          theorem extChartAt_target_eventuallyEq_of_mem {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] {x : M} {z : E} (hz : z (extChartAt I x).target) :
                                          (extChartAt I x).target =ᶠ[nhds z] Set.range I

                                          Around a point in the target, (extChartAt I x).target and range I coincide locally.

                                          theorem extChartAt_target_eventuallyEq {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] {x : M} :
                                          (extChartAt I x).target =ᶠ[nhds ((extChartAt I x) x)] Set.range I

                                          Around the image of the base point, (extChartAt I x).target and range I coincide locally.

                                          theorem continuousAt_extChartAt_symm'' {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] {x : M} {y : E} (h : y (extChartAt I x).target) :
                                          ContinuousAt (↑(extChartAt I x).symm) y
                                          theorem continuousAt_extChartAt_symm' {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] {x x' : M} (h : x' (extChartAt I x).source) :
                                          ContinuousAt (↑(extChartAt I x).symm) ((extChartAt I x) x')
                                          theorem continuousAt_extChartAt_symm {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] (x : M) :
                                          ContinuousAt (↑(extChartAt I x).symm) ((extChartAt I x) x)
                                          theorem continuousOn_extChartAt_symm {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] (x : M) :
                                          ContinuousOn (↑(extChartAt I x).symm) (extChartAt I x).target
                                          theorem extChartAt_target_subset_closure_interior {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] {x : M} :
                                          (extChartAt I x).target closure (interior (extChartAt I x).target)
                                          theorem extChartAt_mem_closure_interior {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} {s : Set M} [ChartedSpace H M] {x₀ x : M} (hx : x closure (interior s)) (h'x : x (extChartAt I x₀).source) :
                                          (extChartAt I x₀) x closure (interior ((extChartAt I x₀).symm ⁻¹' s (extChartAt I x₀).target))
                                          theorem isOpen_extChartAt_preimage' {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] (x : M) {s : Set E} (hs : IsOpen s) :
                                          IsOpen ((extChartAt I x).source (extChartAt I x) ⁻¹' s)
                                          theorem isOpen_extChartAt_preimage {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] (x : M) {s : Set E} (hs : IsOpen s) :
                                          IsOpen ((chartAt H x).source (extChartAt I x) ⁻¹' s)
                                          theorem map_extChartAt_nhdsWithin_eq_image' {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} {s : Set M} [ChartedSpace H M] {x y : M} (hy : y (extChartAt I x).source) :
                                          Filter.map (↑(extChartAt I x)) (nhdsWithin y s) = nhdsWithin ((extChartAt I x) y) ((extChartAt I x) '' ((extChartAt I x).source s))
                                          theorem map_extChartAt_nhdsWithin_eq_image {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} {s : Set M} [ChartedSpace H M] (x : M) :
                                          Filter.map (↑(extChartAt I x)) (nhdsWithin x s) = nhdsWithin ((extChartAt I x) x) ((extChartAt I x) '' ((extChartAt I x).source s))
                                          theorem map_extChartAt_nhdsWithin' {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} {s : Set M} [ChartedSpace H M] {x y : M} (hy : y (extChartAt I x).source) :
                                          Filter.map (↑(extChartAt I x)) (nhdsWithin y s) = nhdsWithin ((extChartAt I x) y) ((extChartAt I x).symm ⁻¹' s Set.range I)
                                          theorem map_extChartAt_nhdsWithin {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} {s : Set M} [ChartedSpace H M] (x : M) :
                                          Filter.map (↑(extChartAt I x)) (nhdsWithin x s) = nhdsWithin ((extChartAt I x) x) ((extChartAt I x).symm ⁻¹' s Set.range I)
                                          theorem map_extChartAt_symm_nhdsWithin' {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} {s : Set M} [ChartedSpace H M] {x y : M} (hy : y (extChartAt I x).source) :
                                          Filter.map (↑(extChartAt I x).symm) (nhdsWithin ((extChartAt I x) y) ((extChartAt I x).symm ⁻¹' s Set.range I)) = nhdsWithin y s
                                          theorem map_extChartAt_symm_nhdsWithin_range' {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] {x y : M} (hy : y (extChartAt I x).source) :
                                          Filter.map (↑(extChartAt I x).symm) (nhdsWithin ((extChartAt I x) y) (Set.range I)) = nhds y
                                          theorem map_extChartAt_symm_nhdsWithin {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} {s : Set M} [ChartedSpace H M] (x : M) :
                                          Filter.map (↑(extChartAt I x).symm) (nhdsWithin ((extChartAt I x) x) ((extChartAt I x).symm ⁻¹' s Set.range I)) = nhdsWithin x s
                                          theorem map_extChartAt_symm_nhdsWithin_range {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] (x : M) :
                                          Filter.map (↑(extChartAt I x).symm) (nhdsWithin ((extChartAt I x) x) (Set.range I)) = nhds x
                                          theorem extChartAt_preimage_mem_nhdsWithin' {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} {s t : Set M} [ChartedSpace H M] {x x' : M} (h : x' (extChartAt I x).source) (ht : t nhdsWithin x' s) :
                                          (extChartAt I x).symm ⁻¹' t nhdsWithin ((extChartAt I x) x') ((extChartAt I x).symm ⁻¹' s Set.range I)

                                          Technical lemma ensuring that the preimage under an extended chart of a neighborhood of a point in the source is a neighborhood of the preimage, within a set.

                                          theorem extChartAt_preimage_mem_nhdsWithin {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} {s t : Set M} [ChartedSpace H M] {x : M} (ht : t nhdsWithin x s) :
                                          (extChartAt I x).symm ⁻¹' t nhdsWithin ((extChartAt I x) x) ((extChartAt I x).symm ⁻¹' s Set.range I)

                                          Technical lemma ensuring that the preimage under an extended chart of a neighborhood of the base point is a neighborhood of the preimage, within a set.

                                          theorem extChartAt_preimage_mem_nhds' {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} {t : Set M} [ChartedSpace H M] {x x' : M} (h : x' (extChartAt I x).source) (ht : t nhds x') :
                                          (extChartAt I x).symm ⁻¹' t nhds ((extChartAt I x) x')
                                          theorem extChartAt_preimage_mem_nhds {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} {t : Set M} [ChartedSpace H M] {x : M} (ht : t nhds x) :
                                          (extChartAt I x).symm ⁻¹' t nhds ((extChartAt I x) x)

                                          Technical lemma ensuring that the preimage under an extended chart of a neighborhood of a point is a neighborhood of the preimage.

                                          theorem extChartAt_preimage_inter_eq {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} {s t : Set M} [ChartedSpace H M] (x : M) :
                                          (extChartAt I x).symm ⁻¹' (s t) Set.range I = (extChartAt I x).symm ⁻¹' s Set.range I (extChartAt I x).symm ⁻¹' t

                                          Technical lemma to rewrite suitably the preimage of an intersection under an extended chart, to bring it into a convenient form to apply derivative lemmas.

                                          theorem ContinuousWithinAt.nhdsWithin_extChartAt_symm_preimage_inter_range {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} {E' : Type u_5} {M' : Type u_6} {H' : Type u_7} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] [TopologicalSpace H'] [TopologicalSpace M'] {I' : ModelWithCorners 𝕜 E' H'} {s : Set M} [ChartedSpace H M] [ChartedSpace H' M'] {f : MM'} {x : M} (hc : ContinuousWithinAt f s x) :
                                          nhdsWithin ((extChartAt I x) x) ((extChartAt I x).symm ⁻¹' s Set.range I) = nhdsWithin ((extChartAt I x) x) ((extChartAt I x).target (extChartAt I x).symm ⁻¹' (s f ⁻¹' (extChartAt I' (f x)).source))
                                          theorem ContinuousWithinAt.extChartAt_symm_preimage_inter_range_eventuallyEq {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} {E' : Type u_5} {M' : Type u_6} {H' : Type u_7} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] [TopologicalSpace H'] [TopologicalSpace M'] {I' : ModelWithCorners 𝕜 E' H'} {s : Set M} [ChartedSpace H M] [ChartedSpace H' M'] {f : MM'} {x : M} (hc : ContinuousWithinAt f s x) :
                                          (extChartAt I x).symm ⁻¹' s Set.range I =ᶠ[nhds ((extChartAt I x) x)] (extChartAt I x).target (extChartAt I x).symm ⁻¹' (s f ⁻¹' (extChartAt I' (f x)).source)

                                          We use the name ext_coord_change for (extChartAt I x').symmextChartAt I x.

                                          theorem ext_coord_change_source {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] (x x' : M) :
                                          ((extChartAt I x').symm.trans (extChartAt I x)).source = I '' ((chartAt H x').symm.trans (chartAt H x)).source
                                          theorem contDiffOn_ext_coord_change {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] [SmoothManifoldWithCorners I M] (x x' : M) :
                                          ContDiffOn 𝕜 ((extChartAt I x) (extChartAt I x').symm) ((extChartAt I x').symm.trans (extChartAt I x)).source
                                          theorem contDiffWithinAt_ext_coord_change {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] [SmoothManifoldWithCorners I M] (x x' : M) {y : E} (hy : y ((extChartAt I x').symm.trans (extChartAt I x)).source) :
                                          ContDiffWithinAt 𝕜 ((extChartAt I x) (extChartAt I x').symm) (Set.range I) y
                                          def writtenInExtChartAt {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} {E' : Type u_5} {M' : Type u_6} {H' : Type u_7} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] (I : ModelWithCorners 𝕜 E H) [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] [TopologicalSpace H'] [TopologicalSpace M'] (I' : ModelWithCorners 𝕜 E' H') [ChartedSpace H M] [ChartedSpace H' M'] (x : M) (f : MM') :
                                          EE'

                                          Conjugating a function to write it in the preferred charts around x. The manifold derivative of f will just be the derivative of this conjugated function.

                                          Equations
                                          Instances For
                                            theorem writtenInExtChartAt_chartAt {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] {x : M} {y : E} (h : y (extChartAt I x).target) :
                                            writtenInExtChartAt I I x (↑(chartAt H x)) y = y
                                            theorem writtenInExtChartAt_chartAt_symm {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] {x : M} {y : E} (h : y (extChartAt I x).target) :
                                            writtenInExtChartAt I I ((chartAt H x) x) (↑(chartAt H x).symm) y = y
                                            theorem writtenInExtChartAt_extChartAt {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] {x : M} {y : E} (h : y (extChartAt I x).target) :
                                            theorem writtenInExtChartAt_extChartAt_symm {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [ChartedSpace H M] {x : M} {y : E} (h : y (extChartAt I x).target) :
                                            writtenInExtChartAt (modelWithCornersSelf 𝕜 E) I ((extChartAt I x) x) (↑(extChartAt I x).symm) y = y
                                            theorem extChartAt_self_eq (𝕜 : Type u_1) {E : Type u_2} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {x : H} :
                                            (extChartAt I x) = I
                                            theorem extChartAt_self_apply (𝕜 : Type u_1) {E : Type u_2} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} {x y : H} :
                                            (extChartAt I x) y = I y

                                            In the case of the manifold structure on a vector space, the extended charts are just the identity.

                                            theorem ext_chart_model_space_apply (𝕜 : Type u_1) {E : Type u_2} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] {x y : E} :
                                            (extChartAt (modelWithCornersSelf 𝕜 E) x) y = y
                                            theorem extChartAt_prod {𝕜 : Type u_1} {E : Type u_2} {M : Type u_3} {H : Type u_4} {E' : Type u_5} {M' : Type u_6} {H' : Type u_7} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] [TopologicalSpace M] {I : ModelWithCorners 𝕜 E H} [NormedAddCommGroup E'] [NormedSpace 𝕜 E'] [TopologicalSpace H'] [TopologicalSpace M'] {I' : ModelWithCorners 𝕜 E' H'} [ChartedSpace H M] [ChartedSpace H' M'] (x : M × M') :
                                            extChartAt (I.prod I') x = (extChartAt I x.1).prod (extChartAt I' x.2)
                                            theorem extChartAt_comp {𝕜 : Type u_1} {E : Type u_2} {H : Type u_4} {M' : Type u_6} {H' : Type u_7} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} [TopologicalSpace H'] [TopologicalSpace M'] [ChartedSpace H' M'] [ChartedSpace H H'] (x : M') :
                                            extChartAt I x = (chartAt H' x).trans (extChartAt I ((chartAt H' x) x))
                                            theorem writtenInExtChartAt_chartAt_comp {𝕜 : Type u_1} {E : Type u_2} {H : Type u_4} {M' : Type u_6} {H' : Type u_7} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} [TopologicalSpace H'] [TopologicalSpace M'] [ChartedSpace H' M'] [ChartedSpace H H'] (x : M') {y : E} (hy : y (extChartAt I x).target) :
                                            writtenInExtChartAt I I x (↑(chartAt H' x)) y = y
                                            theorem writtenInExtChartAt_chartAt_symm_comp {𝕜 : Type u_1} {E : Type u_2} {H : Type u_4} {M' : Type u_6} {H' : Type u_7} [NontriviallyNormedField 𝕜] [NormedAddCommGroup E] [NormedSpace 𝕜 E] [TopologicalSpace H] {I : ModelWithCorners 𝕜 E H} [TopologicalSpace H'] [TopologicalSpace M'] [ChartedSpace H' M'] [ChartedSpace H H'] (x : M') {y : E} (hy : y (extChartAt I x).target) :
                                            writtenInExtChartAt I I ((chartAt H' x) x) (↑(chartAt H' x).symm) y = y

                                            A finite-dimensional manifold modelled on a locally compact field (such as ℝ, ℂ or the p-adic numbers) is locally compact.

                                            def TangentSpace {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_2} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type u_3} [TopologicalSpace M] [ChartedSpace H M] (_x : M) :

                                            The tangent space at a point of the manifold M. It is just E. We could use instead (tangentBundleCore I M).to_topological_vector_bundle_core.fiber x, but we use E to help the kernel.

                                            Equations
                                            Instances For
                                              Equations
                                              • =
                                              instance instModuleTangentSpace {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {x : M} :
                                              Module 𝕜 (TangentSpace I x)
                                              Equations
                                              instance instInhabitedTangentSpace {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) {M : Type u_4} [TopologicalSpace M] [ChartedSpace H M] {x : M} :
                                              Equations
                                              @[reducible, inline]
                                              abbrev TangentBundle {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {H : Type u_3} [TopologicalSpace H] (I : ModelWithCorners 𝕜 E H) (M : Type u_4) [TopologicalSpace M] [ChartedSpace H M] :
                                              Type (max u_4 u_2)

                                              The tangent bundle to a smooth manifold, as a Sigma type. Defined in terms of Bundle.TotalSpace to be able to put a suitable topology on it.

                                              Equations
                                              Instances For