Documentation

Mathlib.GroupTheory.MonoidLocalization.Lemmas

Lemmas about localizations of commutative monoids #

that requires additional imports.

theorem Submonoid.IsLocalizationMap.surj_pi_of_finite {M : Type u_1} {N : Type u_2} {F : Type u_3} {ι : Type u_4} [Finite ι] [CommMonoid M] [CommMonoid N] [FunLike F M N] [MulHomClass F M N] {f : F} {S : Submonoid M} (hf : S.IsLocalizationMap f) (n : ιN) :
∃ (s : S) (x : ιM), ∀ (i : ι), n i * f s = f (x i)

See also the analogous IsLocalization.map_integerMultiple.

theorem AddSubmonoid.IsLocalizationMap.surj_pi_of_finite {M : Type u_1} {N : Type u_2} {F : Type u_3} {ι : Type u_4} [Finite ι] [AddCommMonoid M] [AddCommMonoid N] [FunLike F M N] [AddHomClass F M N] {f : F} {S : AddSubmonoid M} (hf : S.IsLocalizationMap f) (n : ιN) :
∃ (s : S) (x : ιM), ∀ (i : ι), n i + f s = f (x i)
theorem Submonoid.IsLocalizationMap.pi {ι : Type u_1} {M : ιType u_2} {N : ιType u_3} [(i : ι) → CommMonoid (M i)] [(i : ι) → CommMonoid (N i)] (S : (i : ι) → Submonoid (M i)) {f : (i : ι) → M iN i} (hf : ∀ (i : ι), (S i).IsLocalizationMap (f i)) :
theorem AddSubmonoid.IsLocalizationMap.pi {ι : Type u_1} {M : ιType u_2} {N : ιType u_3} [(i : ι) → AddCommMonoid (M i)] [(i : ι) → AddCommMonoid (N i)] (S : (i : ι) → AddSubmonoid (M i)) {f : (i : ι) → M iN i} (hf : ∀ (i : ι), (S i).IsLocalizationMap (f i)) :